Spaces:
Sleeping
Sleeping
update
Browse files
business_transaction_map/components/faiss_vector_database.py
CHANGED
|
@@ -189,10 +189,6 @@ class FaissVectorDatabase:
|
|
| 189 |
"""
|
| 190 |
if len(emb_query.shape) != 2:
|
| 191 |
assert print('Не правильный размер вектора!')
|
| 192 |
-
|
| 193 |
-
print("Index dimension:", self.index.d) # Размерность индекса
|
| 194 |
-
print("Query dimension:", emb_query.shape[1]) # Размерность вектора запроса
|
| 195 |
-
|
| 196 |
|
| 197 |
distances, indexes = self.index.search(emb_query, k_neighbors)
|
| 198 |
answers = {}
|
|
|
|
| 189 |
"""
|
| 190 |
if len(emb_query.shape) != 2:
|
| 191 |
assert print('Не правильный размер вектора!')
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
distances, indexes = self.index.search(emb_query, k_neighbors)
|
| 194 |
answers = {}
|
fastapi_app.py
CHANGED
|
@@ -23,8 +23,6 @@ LLM_API_URL = os.getenv("LLM_API_URL", "")
|
|
| 23 |
LLM_API_KEY = os.getenv("LLM_API_KEY", "")
|
| 24 |
LLM_USE_DEEPINFRA = os.getenv("LLM_USE_DEEPINFRA", "") == "1"
|
| 25 |
|
| 26 |
-
print(LLM_USE_DEEPINFRA)
|
| 27 |
-
|
| 28 |
class Query(BaseModel):
|
| 29 |
query: str = ''
|
| 30 |
top: int = 10
|
|
@@ -46,7 +44,7 @@ class Query(BaseModel):
|
|
| 46 |
'Бухгалтерский документ': False}
|
| 47 |
llm_params: LlmParams = None
|
| 48 |
|
| 49 |
-
|
| 50 |
transaction_maps_search = TransactionMapsSearch()
|
| 51 |
|
| 52 |
app = FastAPI(
|
|
@@ -78,7 +76,7 @@ def log_query_result(query, top, request_id, result):
|
|
| 78 |
@app.post('/search')
|
| 79 |
async def search_route(query: Query) -> dict:
|
| 80 |
|
| 81 |
-
default_llm_params = LlmParams(url=LLM_API_URL,api_key=LLM_API_KEY, model="
|
| 82 |
|
| 83 |
try:
|
| 84 |
question = getattr(query, "query", None)
|
|
@@ -97,7 +95,7 @@ async def search_route(query: Query) -> dict:
|
|
| 97 |
|
| 98 |
print(request_llm_params)
|
| 99 |
|
| 100 |
-
llm_params =
|
| 101 |
|
| 102 |
if LLM_USE_DEEPINFRA:
|
| 103 |
print(llm_params.model)
|
|
|
|
| 23 |
LLM_API_KEY = os.getenv("LLM_API_KEY", "")
|
| 24 |
LLM_USE_DEEPINFRA = os.getenv("LLM_USE_DEEPINFRA", "") == "1"
|
| 25 |
|
|
|
|
|
|
|
| 26 |
class Query(BaseModel):
|
| 27 |
query: str = ''
|
| 28 |
top: int = 10
|
|
|
|
| 44 |
'Бухгалтерский документ': False}
|
| 45 |
llm_params: LlmParams = None
|
| 46 |
|
| 47 |
+
search = SemanticSearch()
|
| 48 |
transaction_maps_search = TransactionMapsSearch()
|
| 49 |
|
| 50 |
app = FastAPI(
|
|
|
|
| 76 |
@app.post('/search')
|
| 77 |
async def search_route(query: Query) -> dict:
|
| 78 |
|
| 79 |
+
default_llm_params = LlmParams(url=LLM_API_URL,api_key=LLM_API_KEY, model="meta-llama/Llama-3.3-70B-Instruct", predict_params=LlmPredictParams(temperature=0.15, top_p=0.95, min_p=0.05, seed=42, repetition_penalty=1.2, presence_penalty=1.1, max_tokens=6000))
|
| 80 |
|
| 81 |
try:
|
| 82 |
question = getattr(query, "query", None)
|
|
|
|
| 95 |
|
| 96 |
print(request_llm_params)
|
| 97 |
|
| 98 |
+
llm_params = getattr(query, "llm_params", default_llm_params)
|
| 99 |
|
| 100 |
if LLM_USE_DEEPINFRA:
|
| 101 |
print(llm_params.model)
|
huggingface/dataset_utils.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
|
| 4 |
+
def get_global_data_path():
|
| 5 |
+
"""
|
| 6 |
+
Загружает путь к папке `legal_info_search_data` внутри датасета Hugging Face.
|
| 7 |
+
|
| 8 |
+
Ожидает, что переменные окружения HF_TOKEN и HF_DATASET заданы.
|
| 9 |
+
Если переменные не указаны, возвращает значение по умолчанию.
|
| 10 |
+
|
| 11 |
+
Returns:
|
| 12 |
+
str: Путь к папке `legal_info_search_data`.
|
| 13 |
+
Raises:
|
| 14 |
+
ValueError: Если переменные окружения не указаны.
|
| 15 |
+
FileNotFoundError: Если папка `legal_info_search_data` не найдена.
|
| 16 |
+
"""
|
| 17 |
+
# Получение переменных окружения
|
| 18 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 19 |
+
hf_dataset = os.environ.get("HF_DATASET")
|
| 20 |
+
default_path = os.environ.get("GLOBAL_DATA_PATH")
|
| 21 |
+
|
| 22 |
+
# Проверяем, заданы ли переменные окружения
|
| 23 |
+
if not hf_token or not hf_dataset:
|
| 24 |
+
return default_path
|
| 25 |
+
|
| 26 |
+
# Загружаем датасет
|
| 27 |
+
try:
|
| 28 |
+
dataset = load_dataset(hf_dataset, use_auth_token=hf_token)
|
| 29 |
+
# Получаем путь к локальному кешу датасета
|
| 30 |
+
dataset_cache_path = dataset.cache_files[0]['filename']
|
| 31 |
+
global_data_path = os.path.join(os.path.dirname(dataset_cache_path), "legal_info_search_data")
|
| 32 |
+
|
| 33 |
+
# Проверяем существование папки
|
| 34 |
+
if not os.path.exists(global_data_path):
|
| 35 |
+
raise FileNotFoundError(f"Папка {global_data_path} не найдена в датасете {hf_dataset}.")
|
| 36 |
+
|
| 37 |
+
return global_data_path
|
| 38 |
+
except Exception as e:
|
| 39 |
+
raise RuntimeError(f"Ошибка при загрузке датасета: {str(e)}")
|
semantic_search.py
CHANGED
|
@@ -19,9 +19,18 @@ import torch.nn.functional as F
|
|
| 19 |
import pickle
|
| 20 |
from llm.prompts import LLM_PROMPT_QE, LLM_PROMPT_OLYMPIC, LLM_PROMPT_KEYS
|
| 21 |
from llm.vllm_api import LlmApi, LlmParams
|
|
|
|
| 22 |
|
| 23 |
global_data_path = os.environ.get("GLOBAL_DATA_PATH", "./legal_info_search_data/")
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
global_model_path = os.environ.get("GLOBAL_MODEL_PATH", "./models/20240202_204910_ep8")
|
| 26 |
|
| 27 |
data_path_consult = global_data_path + "external_data"
|
|
|
|
| 19 |
import pickle
|
| 20 |
from llm.prompts import LLM_PROMPT_QE, LLM_PROMPT_OLYMPIC, LLM_PROMPT_KEYS
|
| 21 |
from llm.vllm_api import LlmApi, LlmParams
|
| 22 |
+
from huggingface import dataset_utils
|
| 23 |
|
| 24 |
global_data_path = os.environ.get("GLOBAL_DATA_PATH", "./legal_info_search_data/")
|
| 25 |
|
| 26 |
+
hf_token = os.environ.get("HF_TOKEN", None)
|
| 27 |
+
hf_dataset = os.environ.get("HF_DATASET", None)
|
| 28 |
+
|
| 29 |
+
if hf_token is not None and hf_dataset is not None:
|
| 30 |
+
global_data_path = dataset_utils.get_global_data_path()
|
| 31 |
+
print(f"Global data path: {global_data_path}")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
global_model_path = os.environ.get("GLOBAL_MODEL_PATH", "./models/20240202_204910_ep8")
|
| 35 |
|
| 36 |
data_path_consult = global_data_path + "external_data"
|