muryshev's picture
update
fd78d64
raw
history blame
26 kB
import asyncio
import json
import logging
import os
import shutil
import zipfile
from datetime import datetime
from functools import partial
from pathlib import Path
from ntr_text_fragmentation import LinkerEntity
import numpy as np
import torch
from fastapi import BackgroundTasks, HTTPException, UploadFile
from ntr_fileparser import ParsedDocument, UniversalParser
from sqlalchemy.orm import Session
from common.common import get_source_format
from common.configuration import Configuration
from components.dbo.models.dataset import Dataset
from components.dbo.models.dataset_document import DatasetDocument
from components.dbo.models.document import Document
from components.dbo.models.entity import EntityModel
from components.services.entity import EntityService
from schemas.dataset import Dataset as DatasetSchema
from schemas.dataset import DatasetExpanded as DatasetExpandedSchema
from schemas.dataset import DatasetProcessing
from schemas.dataset import DocumentsPage as DocumentsPageSchema
from schemas.dataset import SortQueryList
from schemas.document import Document as DocumentSchema
logger = logging.getLogger(__name__)
class DatasetService:
"""
Сервис для работы с датасетами.
"""
def __init__(
self,
entity_service: EntityService,
config: Configuration,
db: Session,
) -> None:
"""
Инициализация сервиса.
Args:
entity_service: Сервис для работы с сущностями
config: Конфигурация приложения
db: SQLAlchemy сессия
"""
logger.info("DatasetService initializing")
self.db = db
self.config = config
self.parser = UniversalParser()
self.entity_service = entity_service
self.documents_path = Path(config.db_config.files.documents_path)
self.tmp_path = Path(os.environ.get("APP_TMP_PATH", '.'))
# Начальная загрузка кеша для активного датасета
try:
active_dataset = self.get_current_dataset()
if active_dataset:
logger.info(
f"Performing initial cache load for active dataset {active_dataset.id}"
)
# Вызываем метод сервиса сущностей для построения кеша
self.entity_service.build_cache(active_dataset.id)
else:
logger.warning(
"No active dataset found during DatasetService initialization."
)
except Exception as e:
# Логгируем ошибку, но не прерываем инициализацию сервиса
logger.error(
f"Failed initial cache load during DatasetService initialization: {e}",
exc_info=True,
)
logger.info("DatasetService initialized")
def get_dataset(
self,
dataset_id: int,
page: int = 1,
page_size: int = 20,
search: str = '',
sort: SortQueryList = [],
) -> DatasetExpandedSchema:
"""
Получить пагинированную информацию о датасете и его документах.
"""
logger.info(
f"Getting dataset {dataset_id} (page={page}, size={page_size}, search='{search}')"
)
self.raise_if_processing()
with self.db() as session:
dataset: Dataset = (
session.query(Dataset).filter(Dataset.id == dataset_id).first()
)
if not dataset:
raise HTTPException(status_code=404, detail='Dataset not found')
query = (
session.query(Document)
.join(DatasetDocument, DatasetDocument.document_id == Document.id)
.filter(DatasetDocument.dataset_id == dataset_id)
.filter(Document.title.like(f'%{search}%'))
)
query = self.sort_documents(query, sort)
documents = query.offset((page - 1) * page_size).limit(page_size).all()
total_documents = (
session.query(Document)
.join(DatasetDocument, DatasetDocument.document_id == Document.id)
.filter(DatasetDocument.dataset_id == dataset_id)
.filter(Document.title.like(f'%{search}%'))
.count()
)
dataset_expanded = DatasetExpandedSchema(
id=dataset.id,
name=dataset.name,
isDraft=dataset.is_draft,
isActive=dataset.is_active,
dateCreated=dataset.date_created,
data=DocumentsPageSchema(
page=[
DocumentSchema(
id=document.id,
name=document.title,
owner=document.owner,
status=document.status,
)
for document in documents
],
total=total_documents,
pageNumber=page,
pageSize=page_size,
),
)
return dataset_expanded
def get_datasets(self) -> list[DatasetSchema]:
"""
Получить список всех датасетов.
"""
self.raise_if_processing()
with self.db() as session:
datasets: list[Dataset] = session.query(Dataset).all()
return [
DatasetSchema(
id=dataset.id,
name=dataset.name,
isDraft=dataset.is_draft,
isActive=dataset.is_active,
dateCreated=dataset.date_created,
)
for dataset in datasets
]
def create_draft(self, parent_id: int) -> DatasetSchema:
"""
Создать черновик датасета на основе родительского датасета.
"""
logger.info(f"Creating draft dataset from parent {parent_id}")
self.raise_if_processing()
with self.db() as session:
parent = session.query(Dataset).filter(Dataset.id == parent_id).first()
if not parent:
raise HTTPException(status_code=404, detail='Parent dataset not found')
if parent.is_draft:
raise HTTPException(status_code=400, detail='Parent dataset is draft')
date = datetime.now()
dataset = Dataset(
name=f"{date.strftime('%Y-%m-%d %H:%M:%S')}",
is_draft=True,
is_active=False,
)
parent_documents = (
session.query(DatasetDocument)
.filter(DatasetDocument.dataset_id == parent_id)
.all()
)
new_dataset_documents = [
DatasetDocument(
dataset_id=dataset.id,
document_id=document.id,
)
for document in parent_documents
]
dataset.documents = new_dataset_documents
session.add(dataset)
session.commit()
session.refresh(dataset)
return self.get_dataset(dataset.id)
def delete_dataset(self, dataset_id: int) -> None:
"""
Удалить черновик датасета.
"""
logger.info(f"Deleting dataset {dataset_id}")
self.raise_if_processing()
with self.db() as session:
dataset: Dataset = (
session.query(Dataset).filter(Dataset.id == dataset_id).first()
)
if not dataset:
raise HTTPException(status_code=404, detail='Dataset not found')
if dataset.name == 'default':
raise HTTPException(
status_code=400, detail='Default dataset cannot be deleted'
)
if dataset.is_active:
raise HTTPException(
status_code=403, detail='Active dataset cannot be deleted'
)
# Инвалидируем кеш перед удалением данных (больше не нужен ID)
self.entity_service.invalidate_cache()
session.query(EntityModel).filter(
EntityModel.dataset_id == dataset_id
).delete()
session.delete(dataset)
session.commit()
async def apply_draft_task(self, dataset_id: int):
"""
Метод для выполнения в отдельном процессе.
"""
logger.info(f"apply_draft_task started")
try:
with self.db() as session:
dataset = (
session.query(Dataset).filter(Dataset.id == dataset_id).first()
)
if not dataset:
raise HTTPException(
status_code=404,
detail=f"Dataset with id {dataset_id} not found",
)
active_dataset = (
session.query(Dataset).filter(Dataset.is_active == True).first()
)
old_active_dataset_id = active_dataset.id if active_dataset else None
await self.apply_draft(dataset)
dataset.is_draft = False
dataset.is_active = True
if active_dataset:
active_dataset.is_active = False
session.commit()
# Обновляем кеши после применения черновика
if old_active_dataset_id:
self.entity_service.invalidate_cache()
await self.entity_service.build_or_rebuild_cache_async(dataset_id)
logger.info(f"apply_draft_task finished")
except Exception as e:
logger.error(f"Error applying draft: {e}")
raise
async def activate_dataset(
self, dataset_id: int, background_tasks: BackgroundTasks
) -> DatasetExpandedSchema:
"""
Активировать датасет в фоновой задаче.
"""
logger.info(f"Activating dataset {dataset_id}")
self.raise_if_processing()
with self.db() as session:
dataset = session.query(Dataset).filter(Dataset.id == dataset_id).first()
active_dataset = session.query(Dataset).filter(Dataset.is_active).first()
if not dataset:
raise HTTPException(status_code=404, detail='Dataset not found')
if dataset.is_active:
raise HTTPException(status_code=400, detail='Dataset is already active')
if dataset.is_draft:
wrapper = partial(asyncio.run, self.apply_draft_task(dataset_id))
background_tasks.add_task(wrapper)
else:
old_active_dataset_id = active_dataset.id if active_dataset else None
dataset.is_active = True
if active_dataset:
active_dataset.is_active = False
session.commit()
# Обновляем кеши после коммита
if old_active_dataset_id:
self.entity_service.invalidate_cache()
await self.entity_service.build_or_rebuild_cache_async(dataset_id)
logger.info(
f"Caches updated after activating non-draft dataset {dataset_id}"
)
return self.get_dataset(dataset_id)
def get_processing(self) -> DatasetProcessing:
"""
Получить информацию о процессе обработки датасета.
"""
tmp_file = Path(self.tmp_path / 'tmp.json')
if tmp_file.exists():
try:
with open(tmp_file, 'r', encoding='utf-8') as f:
info = json.load(f)
except Exception as e:
logger.warning(f"Error loading processing info: {e}")
return DatasetProcessing(
status='in_progress',
total=None,
current=None,
datasetName=None,
)
with self.db() as session:
dataset_name = (
session.query(Dataset)
.filter(Dataset.id == info['dataset_id'])
.first()
.name
)
return DatasetProcessing(
status='in_progress',
total=info['total'],
current=info['current'],
datasetName=dataset_name,
)
return DatasetProcessing(
status='ready',
total=None,
current=None,
datasetName=None,
)
def upload_zip(self, file: UploadFile) -> DatasetExpandedSchema:
"""
Загрузить архив с датасетом.
"""
logger.info(f"Uploading ZIP file {file.filename}")
self.raise_if_processing()
file_location = Path(self.tmp_path / 'tmp' / 'tmp.zip')
logger.debug(f"Saving uploaded file to {file_location}")
file_location.parent.mkdir(parents=True, exist_ok=True)
with open(file_location, 'wb') as f:
f.write(file.file.read())
with zipfile.ZipFile(file_location, 'r') as zip_ref:
zip_ref.extractall(file_location.parent)
dataset = self.create_dataset_from_directory(
is_default=False,
directory_with_documents=file_location.parent,
)
file_location.unlink()
shutil.rmtree(file_location.parent)
return self.get_dataset(dataset.id)
async def apply_draft(
self,
dataset: Dataset,
) -> None:
"""
Сохранить черновик как полноценный датасет.
Вызывает асинхронную обработку документов и батчевую вставку в БД.
Args:
dataset: Датасет для применения
"""
torch.set_num_threads(1)
logger.info(f"Applying draft dataset {dataset.id}")
if not dataset.is_draft:
logger.error(f"Dataset {dataset.id} is not a draft")
raise HTTPException(
status_code=400, detail='Dataset is not draft but trying to apply it'
)
TMP_PATH = Path(self.tmp_path / 'tmp.json')
def progress_callback(current: int, total: int) -> None:
log_step = total // 100
if log_step == 0:
log_step = 1
if current % log_step != 0:
return
if (total > 10) and (current % (total // 10) == 0):
logger.info(f"Processing dataset {dataset.id}: {current}/{total}")
with open(TMP_PATH, 'w', encoding='utf-8') as f:
json.dump(
{
'total': total,
'current': current,
'dataset_id': dataset.id,
},
f,
)
TMP_PATH.touch()
documents: list[Document] = [
doc_dataset_link.document for doc_dataset_link in dataset.documents
]
async def process_single_document(
document: Document,
) -> tuple[list[LinkerEntity], dict[str, np.ndarray]] | None:
path = self.documents_path / f'{document.id}.{document.source_format}'
try:
parsed = self.parser.parse_by_path(str(path))
if parsed is None:
logger.warning(
f"Failed to parse document {document.id} at path {path}"
)
return None
parsed.name = document.title
# Вызываем метод EntityService для подготовки данных
result = await self.entity_service.prepare_document_data_async(
parsed, progress_callback=None
)
return result
except Exception as e:
logger.error(
f"Error processing document {document.id} in apply_draft: {e}",
exc_info=True,
)
return None
async def main_processing():
tasks = [process_single_document(doc) for doc in documents]
results = await asyncio.gather(*tasks)
# Агрегируем результаты
all_entities_to_add = []
all_embeddings_dict = {}
processed_count = 0
for result in results:
if result is not None:
doc_entities, doc_embeddings = result
all_entities_to_add.extend(doc_entities)
all_embeddings_dict.update(doc_embeddings)
processed_count += 1
logger.info(
f"Finished processing {processed_count}/{len(documents)} documents."
)
logger.info(f"Total entities to add: {len(all_entities_to_add)}")
logger.info(f"Total embeddings to add: {len(all_embeddings_dict)}")
# Выполняем батчевую вставку
if all_entities_to_add:
logger.info("Starting batch insertion into database...")
# Вызов метода EntityService
await self.entity_service.add_entities_batch_async(
dataset.id, all_entities_to_add, all_embeddings_dict
)
else:
logger.info("No entities to insert.")
try:
await main_processing()
finally:
if TMP_PATH.exists():
TMP_PATH.unlink()
def raise_if_processing(self) -> None:
"""
Поднять ошибку, если процесс обработки датасета еще не завершен.
"""
if self.get_processing().status == 'in_progress':
logger.error("Dataset processing is already in progress")
raise HTTPException(
status_code=409, detail='Dataset processing is in progress'
)
def create_dataset_from_directory(
self,
is_default: bool,
directory_with_documents: Path,
) -> Dataset:
"""
Создать датасет из директории с xml-документами.
Args:
is_default: Создать ли датасет по умолчанию.
directory_with_xmls: Путь к директории с xml-документами.
directory_with_processed_dataset: Путь к директории с обработанным датасетом - если не передан, будет произведена полная обработка (например, при создании датасета из скриптов).
Returns:
Dataset: Созданный датасет.
"""
logger.info(
f"Creating {'default' if is_default else 'new'} dataset from directory {directory_with_documents}"
)
with self.db() as session:
documents = []
date = datetime.now()
name = 'default' if is_default else f'{date.strftime("%Y-%m-%d %H:%M:%S")}'
dataset = Dataset(
name=name,
is_draft=True,
is_active=True if is_default else False,
)
session.add(dataset)
for subpath in self._get_recursive_dirlist(directory_with_documents):
document, relation = self._create_document(
directory_with_documents, subpath, dataset
)
if document is None:
continue
documents.append(document)
session.add(document)
session.add(relation)
logger.info(f"Created {len(documents)} documents")
session.flush()
self.documents_path.mkdir(parents=True, exist_ok=True)
for document in documents:
session.refresh(document)
old_filename = document.filename
new_filename = '{}.{}'.format(document.id, document.source_format)
shutil.copy(
directory_with_documents / old_filename,
self.documents_path / new_filename,
)
document.filename = new_filename
logger.info(f"Documents renamed with ids")
session.commit()
session.refresh(dataset)
dataset_id = dataset.id
logger.info(f"Dataset {dataset_id} created")
return dataset
def create_empty_dataset(self, is_default: bool) -> Dataset:
"""
Создать пустой датасет.
"""
with self.db() as session:
name = (
'default'
if is_default
else f'{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}'
)
dataset = Dataset(
name=name,
is_active=True if is_default else False,
is_draft=False,
)
session.add(dataset)
session.commit()
session.refresh(dataset)
return dataset
@staticmethod
def _get_recursive_dirlist(path: Path) -> list[Path]:
"""
Возвращает список всех xml и docx файлов на всех уровнях вложенности.
Args:
path: Путь к директории.
Returns:
list[Path]: Список путей к xml-файлам относительно path.
"""
xml_files = set() # set для отбрасывания неуникальных путей
for ext in ('*.xml', '*.XML', '*.docx', '*.DOCX'):
xml_files.update(path.glob(f'**/{ext}'))
return [p.relative_to(path) for p in xml_files]
def _create_document(
self,
documents_path: Path,
subpath: os.PathLike,
dataset: Dataset,
) -> tuple[Document | None, DatasetDocument | None]:
"""
Создаёт документ в базе данных.
Args:
documents_path: Путь к директории с документами.
subpath: Путь к документу относительно documents_path.
dataset: Датасет, к которому относится документ.
Returns:
tuple[Document, DatasetDocument]: Кортеж из документа и его связи с датасетом.
"""
logger.debug(f"Creating document from {subpath}")
try:
source_format = get_source_format(str(subpath))
path = documents_path / subpath
parsed: ParsedDocument | None = self.parser.parse_by_path(str(path))
if 'Приложение' in parsed.name:
parsed.name = path.parent.name + ' ' + parsed.name
if not parsed:
logger.warning(f"Failed to parse file: {subpath}")
return None, None
document = Document(
filename=str(subpath),
title=parsed.name,
status=parsed.meta.status,
owner=parsed.meta.owner,
source_format=source_format,
)
relation = DatasetDocument(
document=document,
dataset=dataset,
)
return document, relation
except Exception as e:
logger.error(f"Error creating document from {subpath}: {e}")
return None, None
def get_current_dataset(self) -> Dataset | None:
with self.db() as session:
result = session.query(Dataset).filter(Dataset.is_active == True).first()
return result
def get_default_dataset(self) -> Dataset | None:
with self.db() as session:
result = session.query(Dataset).filter(Dataset.name == 'default').first()
return result
def sort_documents(
self,
query: "Query", # type: ignore
sort: SortQueryList,
) -> "Query": # type: ignore
"""
Сортирует документы по заданным полям и направлениям сортировки.
"""
if sort and (len(sort.sorts) > 0):
for sort_query in sort.sorts:
field = sort_query.field
direction = sort_query.direction
if field == 'name':
column = Document.title
elif field == 'status':
column = Document.status
elif field == 'owner':
column = Document.owner
elif field == 'id':
column = Document.id
else:
raise HTTPException(
status_code=400, detail=f'Invalid sort field: {field}'
)
query = query.order_by(
column.desc() if direction.lower() == 'desc' else column
)
else:
query = query.order_by(Document.id.desc()) # Default sorting
return query