Spaces:
Sleeping
Sleeping
File size: 36,115 Bytes
0341212 be03119 0341212 be03119 0341212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 |
import asyncio # Добавляем импорт
import io # Для работы с UploadFile как с файлом
import logging
import re # Добавляем re
from pathlib import Path # Добавляем Path
from typing import Any
from uuid import UUID
import pandas as pd
from fastapi import HTTPException, UploadFile
from fuzzywuzzy import fuzz
from common.configuration import Configuration
from components.llm.common import Message
from components.services.dialogue import DialogueService
from components.services.entity import EntityService
logger = logging.getLogger(__name__)
# Константа для сравнения имен файлов
FILENAME_SIMILARITY_THRESHOLD = 40 # Считаем имена файлов одинаковыми, если partial_ratio >= 90
class SearchMetricsService:
"""Сервис для расчета метрик поиска по загруженному файлу.
Attributes:
entity_service: Сервис для работы с сущностями.
config: Конфигурация приложения.
dialogue_service: Сервис для работы с диалогами.
"""
def __init__(
self,
entity_service: EntityService,
config: Configuration,
dialogue_service: DialogueService,
):
"""Инициализирует сервис.
Args:
entity_service: Сервис для работы с сущностями.
config: Конфигурация приложения.
dialogue_service: Сервис для работы с диалогами.
"""
self.entity_service = entity_service
self.config = config
self.dialogue_service = dialogue_service
# --- Вспомогательная функция для очистки имени файла ---
def _clean_filename(self, filename: str | None) -> str:
"""Удаляет расширение и приводит к нижнему регистру."""
if not filename:
return ""
return Path(str(filename)).stem.lower()
async def _load_evaluation_data(self, file: UploadFile) -> list[dict[str, Any]]:
"""
Загружает, валидирует и ГРУППИРУЕТ данные из XLSX файла по уникальным вопросам.
Сохраняет список эталонных текстов, SET ожидаемых имен файлов и эталонный ответ.
"""
if not file.filename.endswith(".xlsx"):
raise HTTPException(
status_code=400,
detail="Invalid file format. Please upload an XLSX file.",
)
try:
contents = await file.read()
data = io.BytesIO(contents)
# +++ Добавляем answer в dtype +++
df = pd.read_excel(data, dtype={'id': str, 'question': str, 'text': str, 'filename': str, 'answer': str})
except Exception as e:
logger.error(f"Error reading Excel file: {e}", exc_info=True)
raise HTTPException(
status_code=400, detail=f"Error reading Excel file: {e}"
)
finally:
await file.close()
# +++ Добавляем answer в required_columns +++
required_columns = ["id", "question", "text", "filename", "answer"]
missing_cols = [col for col in required_columns if col not in df.columns]
if missing_cols:
raise HTTPException(
status_code=400,
detail=f"Missing required columns in XLSX file: {missing_cols}. Expected: 'id', 'question', 'text', 'filename', 'answer'",
)
grouped_data = []
for question_id, group in df.groupby('id'):
first_valid_question = group['question'].dropna().iloc[0] if not group['question'].dropna().empty else None
all_texts_raw = group['text'].dropna().tolist()
all_filenames_raw = group['filename'].dropna().tolist()
expected_filenames_cleaned = {self._clean_filename(fn) for fn in all_filenames_raw if self._clean_filename(fn)}
# +++ Извлекаем первый валидный answer +++
first_valid_answer = group['answer'].dropna().iloc[0] if not group['answer'].dropna().empty else None
# +++ ИСПРАВЛЕНИЕ: Сохраняем тексты ячеек как есть, без дробления +++
ground_truth_texts_raw = [str(text_block) for text_block in all_texts_raw if str(text_block).strip()] # Список оригинальных текстов ячеек (не пустых)
# --- Обновляем проверку на пропуск группы, используя ground_truth_texts_raw --- (включая проверку на пустой список текстов)
if pd.isna(question_id) or not first_valid_question or not ground_truth_texts_raw or not expected_filenames_cleaned or first_valid_answer is None:
logger.warning(f"Skipping group for question_id '{question_id}' due to missing question, 'text', 'filename', or 'answer' data within the group, or empty 'text' cells.")
continue
# +++ КОНЕЦ ИСПРАВЛЕНИЯ +++
grouped_data.append({
"question_id": str(question_id),
"question": str(first_valid_question),
"ground_truth_texts": ground_truth_texts_raw, # Сохраняем список оригинальных текстов ячеек
"expected_filenames": expected_filenames_cleaned,
"reference_answer": str(first_valid_answer) # Добавляем эталонный ответ
})
if not grouped_data:
raise HTTPException(
status_code=400,
detail="No valid data groups found in the uploaded file after processing and grouping by 'id'."
)
logger.info(f"Successfully loaded and grouped {len(grouped_data)} unique questions from file.")
return grouped_data
# --- Убираем логи из _calculate_relevance_metrics ---
def _calculate_relevance_metrics(
self,
retrieved_chunks: list[str],
ground_truth_texts: list[str],
similarity_threshold: float,
question_id_for_log: str = "unknown" # ID можно оставить для warning/error
) -> tuple[float, float, float, int, int, int, int, list[int]]:
num_retrieved = len(retrieved_chunks)
total_ground_truth = len(ground_truth_texts)
if total_ground_truth == 0: return 0.0, 0.0, 0.0, 0, 0, 0, num_retrieved, []
if num_retrieved == 0: return 0.0, 0.0, 0.0, 0, total_ground_truth, 0, 0, list(range(total_ground_truth))
ground_truth_found = [False] * total_ground_truth
relevant_chunks_count = 0
fuzzy_threshold_int = similarity_threshold * 100
for chunk_text in retrieved_chunks:
is_chunk_relevant = False
for i, gt_text in enumerate(ground_truth_texts):
overlap_score = fuzz.partial_ratio(chunk_text, gt_text)
if overlap_score >= fuzzy_threshold_int:
is_chunk_relevant = True
ground_truth_found[i] = True
# Не обязательно break, чанк может быть релевантен нескольким пунктам
if is_chunk_relevant:
relevant_chunks_count += 1
# logger.debug(...) # <--- УДАЛЕНО
# else:
# logger.debug(...) # <--- УДАЛЕНО
found_puncts_count = sum(ground_truth_found)
precision = relevant_chunks_count / num_retrieved
recall = found_puncts_count / total_ground_truth
f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0.0
missed_gt_indices = [i for i, found in enumerate(ground_truth_found) if not found]
# logger.debug(...) # <--- УДАЛЕНО
return precision, recall, f1, found_puncts_count, total_ground_truth, relevant_chunks_count, num_retrieved, missed_gt_indices
# --- Убираем логи из _calculate_assembly_punct_recall ---
def _calculate_assembly_punct_recall(
self,
assembled_context: str,
ground_truth_texts: list[str],
similarity_threshold: float,
question_id_for_log: str = "unknown" # ID можно оставить для warning/error
) -> tuple[float, int, int]:
# ... (расчеты как были) ...
if not ground_truth_texts or not assembled_context: return 0.0, 0, 0
assembly_found_puncts = 0
valid_ground_truth_count = 0
fuzzy_threshold_int = similarity_threshold * 100
for i, punct_text in enumerate(ground_truth_texts):
punct_parts = [part.strip() for part in punct_text.split('\n') if part.strip()]
if not punct_parts: continue
valid_ground_truth_count += 1
is_punct_found = False
for j, part_text in enumerate(punct_parts):
score = fuzz.partial_ratio(assembled_context, part_text)
if score >= fuzzy_threshold_int:
# logger.debug(...) # <--- УДАЛЕНО
is_punct_found = True
break
if is_punct_found:
assembly_found_puncts += 1
# else:
# logger.debug(...) # <--- УДАЛЕНО
assembly_recall = assembly_found_puncts / valid_ground_truth_count if valid_ground_truth_count > 0 else 0.0
# logger.debug(...) # <--- УДАЛЕНО
return assembly_recall, assembly_found_puncts, valid_ground_truth_count
# --- Убираем логи из _extract_and_compare_documents ---
def _extract_and_compare_documents(
self,
assembled_context: str,
expected_filenames_cleaned: set[str]
) -> tuple[float, int]:
# ... (расчеты как были) ...
if not assembled_context or not expected_filenames_cleaned: return 0.0, 0
pattern = r"#\s*\[Источник\]\s*-\s*(.*?)(?:\n|$)"
found_filenames_raw = re.findall(pattern, assembled_context)
found_filenames_cleaned = {self._clean_filename(fn) for fn in found_filenames_raw if self._clean_filename(fn)}
# logger.debug(...) # <--- УДАЛЕНО
if not found_filenames_cleaned: return 0.0, 0
found_expected_count = 0
spurious_count = 0
matched_expected = set()
for found_clean in found_filenames_cleaned:
is_spurious = True
for expected_clean in expected_filenames_cleaned:
score = fuzz.partial_ratio(found_clean, expected_clean)
if score >= FILENAME_SIMILARITY_THRESHOLD:
if expected_clean not in matched_expected:
found_expected_count += 1
matched_expected.add(expected_clean)
is_spurious = False
# Не обязательно break
# +++ Логирование убрано +++
if is_spurious:
spurious_count += 1
doc_recall = found_expected_count / len(expected_filenames_cleaned)
# logger.debug(...) # <--- УДАЛЕНО
return doc_recall, spurious_count
async def _call_qe_safe(self, original_question: str) -> str | None:
"""
Безопасно вызывает QE сервис для одного вопроса.
Args:
original_question: Исходный текст вопроса.
Returns:
Строку с новым запросом от QE, если он успешен и релевантен,
иначе None.
"""
try:
fake_history = [Message(role="user", content=original_question, searchResults="")]
qe_result = await self.dialogue_service.get_qe_result(fake_history)
logger.debug(f"QE result for '{original_question[:50]}...': {qe_result}")
if qe_result.use_search and qe_result.search_query:
return qe_result.search_query
# QE решил не искать или вернул пустой результат
return None
except Exception as e:
logger.error(f"Error during single QE call for question '{original_question[:50]}...': {e}", exc_info=True)
# В случае ошибки возвращаем None, чтобы использовать оригинальный вопрос
return None
async def evaluate_from_file(
self,
file: UploadFile,
dataset_id: int,
similarity_threshold: float,
top_n_values: list[int],
use_query_expansion: bool,
top_worst_k: int = 5,
) -> dict[str, Any]:
"""
Выполняет оценку по файлу, группируя строки по вопросам и считая метрики сборки.
"""
logger.info(f"Starting evaluation for dataset_id={dataset_id}, top_n={top_n_values}, threshold={similarity_threshold}, use_query_expansion={use_query_expansion} (Grouped by question_id)")
evaluation_data = await self._load_evaluation_data(file)
results: dict[int, dict[str, Any]] = {
n: {
'precision_list': [], 'recall_list': [], 'f1_list': [], # Для Macro/Weighted
'assembly_punct_recall_list': [],
'doc_recall_list': [],
'spurious_docs_list': [],
} for n in top_n_values
}
question_performance: dict[str, dict[str, Any | None]] = {}
max_top_n = max(top_n_values) if top_n_values else 0
if not max_top_n: raise HTTPException(status_code=400, detail="top_n_values list cannot be empty.")
# +++ Инициализация НОВЫХ общих счетчиков Micro (по n) +++
overall_micro_counters = {
n: {'found': 0, 'gt': 0, 'relevant': 0, 'retrieved': 0}
for n in top_n_values
}
# --- Счетчики для Micro Assembly Recall остаются ---
overall_assembly_found_puncts = 0
overall_valid_gt_for_assembly = 0
# --- Этап 2: Подготовка запросов (QE) --- (Добавляем reference_answer)
processed_items = []
if use_query_expansion and evaluation_data:
logger.info(f"Starting asynchronous QE for {len(evaluation_data)} unique questions...")
tasks = [self._call_qe_safe(item['question']) for item in evaluation_data]
qe_results_or_errors = await asyncio.gather(*tasks, return_exceptions=True)
logger.info("Asynchronous QE calls finished for unique questions.")
for i, item in enumerate(evaluation_data):
query_for_search = item['question']
qe_result = qe_results_or_errors[i]
if isinstance(qe_result, str): query_for_search = qe_result
processed_items.append({
'question_id': item['question_id'],
'question': item['question'],
'query_for_search': query_for_search,
'ground_truth_texts': item['ground_truth_texts'],
'expected_filenames': item['expected_filenames'],
'reference_answer': item['reference_answer'] # Добавляем
})
else:
logger.info("QE disabled or no data. Preparing items without QE.")
for item in evaluation_data:
processed_items.append({
'question_id': item['question_id'],
'question': item['question'],
'query_for_search': item['question'],
'ground_truth_texts': item['ground_truth_texts'],
'expected_filenames': item['expected_filenames'],
'reference_answer': item['reference_answer'] # Добавляем
})
# --- Этап 3: Цикл по УНИКАЛЬНЫМ вопросам ---
for item in processed_items:
question_id = item['question_id']
original_question_text = item['question']
reference_answer = item['reference_answer'] # Извлекаем
ground_truth_texts = item['ground_truth_texts']
expected_filenames = item['expected_filenames']
total_gt_count = len(ground_truth_texts)
query_for_search = item['query_for_search']
# --- Инициализируем question_performance с новыми полями ---
if question_id not in question_performance:
question_performance[question_id] = {
'f1': None,
'assembly_recall_for_worst': None, # Новое поле для сортировки
'question_text': original_question_text,
'reference_answer': reference_answer,
'missed_gt_indices': None
}
logger.debug(f"Processing unique QID={question_id} with {total_gt_count} ground truths. Query: \"{query_for_search}\"")
try:
# --- Поиск (Один раз для max_top_n) ---
logger.info(f"Searching for QID={question_id} with k={max_top_n}...") # Оставим INFO
_, scores, ids = self.entity_service.search_similar_old(
query=query_for_search, dataset_id=dataset_id, k=max_top_n
)
# Важно: 'ids' это список СТРОК UUID
# --- !!! Удаляем ненужное извлечение текстов здесь !!! ---
# all_retrieved_chunk_texts = []
# ...
# --- Цикл по top_n ---
for n in top_n_values:
current_top_n = min(n, len(ids))
# +++ Получаем ID чанков для текущего n +++
chunk_ids_for_n = ids[:current_top_n]
retrieved_count_for_n = len(chunk_ids_for_n)
# +++ Получаем тексты чанков для расчета метрик chunk/punct +++
retrieved_chunks_texts_for_n = []
if chunk_ids_for_n.size > 0:
# Используем асинхронный вызов
chunks_for_n = await self.entity_service.chunk_repository.get_entities_by_ids_async(
[UUID(ch_id) for ch_id in chunk_ids_for_n]
)
chunk_map_for_n = {str(ch.id): ch for ch in chunks_for_n}
retrieved_chunks_texts_for_n = [
chunk_map_for_n[ch_id].in_search_text
for ch_id in chunk_ids_for_n
if ch_id in chunk_map_for_n and hasattr(chunk_map_for_n[ch_id], 'in_search_text') and chunk_map_for_n[ch_id].in_search_text
]
# --- Метрики Chunk/Punct ---
(
precision, recall, f1,
found_count, total_gt,
relevant_count, retrieved_count_calc, # retrieved_count_calc == retrieved_count_for_n
missed_indices
) = self._calculate_relevance_metrics(
retrieved_chunks_texts_for_n, # Используем тексты для n
ground_truth_texts,
similarity_threshold,
question_id_for_log=question_id
)
# Агрегация для Macro/Weighted
results[n]['precision_list'].append((precision, retrieved_count_for_n)) # Вес = retrieved_count_for_n
results[n]['recall_list'].append((recall, total_gt))
results[n]['f1_list'].append((f1, total_gt))
# Агрегация для Micro
overall_micro_counters[n]['found'] += found_count
overall_micro_counters[n]['gt'] += total_gt
overall_micro_counters[n]['relevant'] += relevant_count
overall_micro_counters[n]['retrieved'] += retrieved_count_for_n # Используем кол-во для n
# --- Метрики Сборки ---
# +++ Правильная сборка контекста с помощью build_text +++
logger.info(f"Building context for QID={question_id}, n={n} using {len(chunk_ids_for_n)} chunk IDs...")
# Используем асинхронный вызов и передаем dataset_id
assembled_context_for_n = await self.entity_service.build_text_async(
entities=chunk_ids_for_n.tolist(), # Преобразуем numpy array в list[str]
dataset_id=dataset_id, # Передаем ID датасета
# chunk_scores можно передать, если они нужны для сборки, иначе None
# include_tables=True, # По умолчанию
# max_documents=None, # По умолчанию
)
assembly_recall, single_q_assembly_found, single_q_valid_gt = self._calculate_assembly_punct_recall(
assembled_context_for_n,
ground_truth_texts,
similarity_threshold,
question_id_for_log=question_id
)
results[n]['assembly_punct_recall_list'].append(assembly_recall)
if n == max_top_n:
overall_assembly_found_puncts += single_q_assembly_found
overall_valid_gt_for_assembly += single_q_valid_gt
# --- Метрики Документов ---
doc_recall, spurious_docs = self._extract_and_compare_documents(
assembled_context_for_n, # Используем корректный контекст
expected_filenames
)
results[n]['doc_recall_list'].append(doc_recall)
results[n]['spurious_docs_list'].append(spurious_docs)
# --- Сохраняем показатели для худших ---
if n == max_top_n:
question_performance[question_id]['f1'] = f1
question_performance[question_id]['assembly_recall_for_worst'] = assembly_recall
question_performance[question_id]['missed_gt_indices'] = missed_indices
except HTTPException as http_exc:
logger.error(f"HTTP Error processing QID={question_id}: {http_exc.detail}")
if question_id in question_performance:
# +++ Устанавливаем F1 в 0.0 при ошибке +++
question_performance[question_id]['f1'] = 0.0
question_performance[question_id]['assembly_recall_for_worst'] = 0.0 # Худший recall
question_performance[question_id]['missed_gt_indices'] = list(range(total_gt_count))
for n_err in top_n_values:
results[n_err]['precision_list'].append((0.0, 0))
results[n_err]['recall_list'].append((0.0, total_gt_count))
results[n_err]['f1_list'].append((0.0, total_gt_count))
results[n_err]['assembly_punct_recall_list'].append(0.0)
results[n_err]['doc_recall_list'].append(0.0)
results[n_err]['spurious_docs_list'].append(0)
# +++ Обновляем общий счетчик GT для Micro при ошибке +++
overall_micro_counters[n_err]['gt'] += total_gt_count
except Exception as e:
logger.error(f"General Error processing QID={question_id}: {e}", exc_info=True)
if question_id in question_performance:
# +++ Устанавливаем F1 в 0.0 при ошибке +++
question_performance[question_id]['f1'] = 0.0
question_performance[question_id]['assembly_recall_for_worst'] = 0.0
question_performance[question_id]['missed_gt_indices'] = list(range(total_gt_count))
for n_err in top_n_values:
results[n_err]['precision_list'].append((0.0, 0))
results[n_err]['recall_list'].append((0.0, total_gt_count))
results[n_err]['f1_list'].append((0.0, total_gt_count))
results[n_err]['assembly_punct_recall_list'].append(0.0)
results[n_err]['doc_recall_list'].append(0.0)
results[n_err]['spurious_docs_list'].append(0)
# +++ Обновляем общий счетчик GT для Micro при ошибке +++
overall_micro_counters[n_err]['gt'] += total_gt_count
# --- Этап 4: Расчет итоговых метрик ---
final_metrics_results: dict[int, dict[str, float | None]] = {}
# !!! УДАЛЯЕМ ПОВТОРНУЮ ИНИЦИАЛИЗАЦИЮ СЧЕТЧИКОВ !!!
# overall_micro_counters = { ... }
# overall_assembly_found_puncts = 0
# overall_valid_gt_for_assembly = 0
# +++ Лог перед финальным расчетом +++ (Оставляем на всякий случай)
logger.debug(f"Data before final calculation: results={results}")
logger.debug(f"Overall micro counters before final calc: {overall_micro_counters}")
logger.debug(f"Overall assembly counters before final calc: found={overall_assembly_found_puncts}, valid_gt={overall_valid_gt_for_assembly}")
# ...
for n in top_n_values:
# Извлекаем списки
prec_list = results[n]['precision_list']
rec_list = results[n]['recall_list']
f1_list = results[n]['f1_list']
assembly_recall_list = results[n]['assembly_punct_recall_list']
doc_recall_list = results[n]['doc_recall_list']
spurious_docs_list = results[n]['spurious_docs_list']
# --- Расчет Macro (с явной проверкой) ---
macro_precision = sum(p for p, w in prec_list) / len(prec_list) if prec_list else None
macro_recall = sum(r for r, w in rec_list) / len(rec_list) if rec_list else None
macro_f1 = sum(f for f, w in f1_list) / len(f1_list) if f1_list else None
# --- Расчет Weighted (с явной проверкой на пустой список) ---
weighted_precision = None
if prec_list:
weighted_precision_num = sum(p * w for p, w in prec_list)
weighted_precision_den = sum(w for p, w in prec_list)
weighted_precision = weighted_precision_num / weighted_precision_den if weighted_precision_den > 0 else 0.0
weighted_recall = None
if rec_list:
weighted_recall_num = sum(r * w for r, w in rec_list)
weighted_recall_den = sum(w for r, w in rec_list)
weighted_recall = weighted_recall_num / weighted_recall_den if weighted_recall_den > 0 else 0.0
weighted_f1 = None
if f1_list:
weighted_f1_num = sum(f * w for f, w in f1_list)
weighted_f1_den = sum(w for f, w in f1_list)
weighted_f1 = weighted_f1_num / weighted_f1_den if weighted_f1_den > 0 else 0.0
# --- Расчет Micro (теперь использует накопленные значения) ---
total_found = overall_micro_counters[n]['found']
total_gt = overall_micro_counters[n]['gt']
total_relevant = overall_micro_counters[n]['relevant']
total_retrieved = overall_micro_counters[n]['retrieved']
micro_precision = total_relevant / total_retrieved if total_retrieved > 0 else 0.0
micro_recall = total_found / total_gt if total_gt > 0 else 0.0
micro_f1 = (2 * micro_precision * micro_recall) / (micro_precision + micro_recall) if (micro_precision + micro_recall) > 0 else 0.0
# --- Новые Macro метрики (с явной проверкой) ---
assembly_punct_recall_macro = sum(assembly_recall_list) / len(assembly_recall_list) if assembly_recall_list else None
doc_recall_macro = sum(doc_recall_list) / len(doc_recall_list) if doc_recall_list else None
avg_spurious_docs = sum(spurious_docs_list) / len(spurious_docs_list) if spurious_docs_list else None
# Заполняем результат (без изменений)
final_metrics_results[n] = {
'macro_precision': macro_precision,
'macro_recall': macro_recall,
'macro_f1': macro_f1,
'weighted_precision': weighted_precision,
'weighted_recall': weighted_recall,
'weighted_f1': weighted_f1,
'micro_precision': micro_precision,
'micro_recall': micro_recall,
'micro_f1': micro_f1,
'assembly_punct_recall_macro': assembly_punct_recall_macro,
'doc_recall_macro': doc_recall_macro,
'avg_spurious_docs': avg_spurious_docs,
}
logger.info(f"Final metrics for top_n={n}: {final_metrics_results[n]}\n")
# --- Расчет Micro Assembly Punct Recall (теперь использует накопленные значения) ---
micro_assembly_punct_recall = (
overall_assembly_found_puncts / overall_valid_gt_for_assembly
if overall_valid_gt_for_assembly > 0 else 0.0
)
# --- Поиск худших вопросов (по Assembly Recall) ---
qid_to_ground_truths = {item['question_id']: item['ground_truth_texts'] for item in processed_items}
worst_questions_processed = []
logger.debug(f"Debugging worst questions: question_performance = {question_performance}")
# +++ Сортируем по assembly_recall_for_worst +++
sorted_performance = sorted(
[
(qid, data) for qid, data in question_performance.items()
# !!! КЛЮЧЕВОЙ ФИЛЬТР !!! Убедимся, что assembly_recall_for_worst не None
if data.get('assembly_recall_for_worst') is not None
],
key=lambda item: item[1]['assembly_recall_for_worst'] # Сортируем по recall ПО ВОЗРАСТАНИЮ
)
# +++ ДОБАВЛЯЕМ ЛОГ ПОСЛЕ СОРТИРОВКИ +++
logger.debug(f"Debugging worst questions: sorted_performance (top {top_worst_k}) = {sorted_performance[:top_worst_k]}")
# +++ КОНЕЦ ЛОГА +++
# +++ ДОБАВЛЯЕМ ЛОГИ ВНУТРИ ЦИКЛА +++
for qid, perf_data in sorted_performance[:top_worst_k]:
logger.debug(f"Processing worst question: QID={qid}, Data={perf_data}")
try:
missed_indices = perf_data.get('missed_gt_indices', [])
logger.debug(f"QID={qid}: Got missed_indices: {missed_indices}")
missed_texts = []
if missed_indices is not None and qid in qid_to_ground_truths:
original_gts = qid_to_ground_truths[qid]
missed_texts = [original_gts[i] for i in missed_indices if i < len(original_gts)]
logger.debug(f"QID={qid}: Found {len(missed_texts)} missed texts from {len(original_gts)} original GTs.")
elif qid not in qid_to_ground_truths:
logger.warning(f"QID={qid} not found in qid_to_ground_truths when processing worst questions.")
# Формируем словарь перед добавлением
worst_entry = {
'id': qid,
'f1': perf_data.get('f1'), # Используем .get() для безопасности
'assembly_recall': perf_data.get('assembly_recall_for_worst'),
'text': perf_data.get('question_text'),
'reference_answer': perf_data.get('reference_answer'),
'missed_ground_truths': missed_texts
}
logger.debug(f"QID={qid}: Appending entry: {worst_entry}")
worst_questions_processed.append(worst_entry)
except Exception as e:
logger.error(f"Error processing worst question QID={qid}: {e}", exc_info=True)
# Не прерываем цикл, но логируем ошибку
# +++ КОНЕЦ ЛОГОВ ВНУТРИ ЦИКЛА +++
# --- Формируем финальный ответ ---
metrics_for_max_n = final_metrics_results.get(max_top_n, {})
overall_total_found_micro = overall_micro_counters[max_top_n]['found']
overall_total_gt_micro = overall_micro_counters[max_top_n]['gt']
# --- Логирование перед ответом (Оставляем) ---
logger.debug(f"Final Response Prep: max_top_n={max_top_n}")
logger.debug(f"Final Response Prep: metrics_for_max_n={metrics_for_max_n}")
logger.debug(f"Final Response Prep: overall_micro_counters={overall_micro_counters}")
logger.debug(f"Final Response Prep: micro_recall_for_human_readable = {metrics_for_max_n.get('micro_recall')}")
# --- Конец лога ---
# +++ Перестраиваем структуру ответа с РУССКИМИ КЛЮЧАМИ +++
final_response = {
# --- Человекочитаемые метрики --- (Вверху)
"Найдено пунктов (всего)": overall_total_found_micro,
"Всего пунктов (эталон)": overall_total_gt_micro,
"% найденных пунктов (чанк присутствует в пункте)": metrics_for_max_n.get('micro_recall'), # Micro Recall
"% пунктов были найдены в собранной версии": micro_assembly_punct_recall, # Micro Assembly Recall
"В среднем для каждого вопроса найден такой % пунктов": metrics_for_max_n.get('macro_recall'), # Macro Recall
"В среднем для каждого вопроса найден такой % документов": metrics_for_max_n.get('doc_recall_macro'), # Macro Doc Recall
"В среднем для каждого вопроса найдено N лишних документов, N": metrics_for_max_n.get('avg_spurious_docs'), # Avg Spurious Docs
# --- Результаты по top_n --- (В середине)
"results": final_metrics_results,
# --- Худшие вопросы --- (Внизу)
"worst_performing_questions": worst_questions_processed,
}
return final_response
|