wan2-1-fast / app.py
multimodalart's picture
Update app.py
c103ac7 verified
raw
history blame
14 kB
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import logging
import numpy as np
from PIL import Image
# --- Global Model Loading & LoRA Handling ---
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# --- Model Loading ---
logger.info(f"Loading Image Encoder for {MODEL_ID}...")
image_encoder = CLIPVisionModel.from_pretrained(
MODEL_ID,
subfolder="image_encoder",
torch_dtype=torch.float32 # Using float32 for image encoder as sometimes bfloat16/float16 can be problematic
)
logger.info(f"Loading VAE for {MODEL_ID}...")
vae = AutoencoderKLWan.from_pretrained(
MODEL_ID,
subfolder="vae",
torch_dtype=torch.float32 # Using float32 for VAE for precision
)
logger.info(f"Loading Pipeline {MODEL_ID}...")
pipe = WanImageToVideoPipeline.from_pretrained(
MODEL_ID,
vae=vae,
image_encoder=image_encoder,
torch_dtype=torch.bfloat16 # Main pipeline can use bfloat16 for speed/memory
)
flow_shift = 8.0
pipe.scheduler = UniPCMultistepScheduler.from_config(
pipe.scheduler.config, flow_shift=flow_shift
)
logger.info("Moving pipeline to CUDA...")
pipe.to("cuda")
# --- LoRA Loading ---
logger.info(f"Downloading LoRA {LORA_FILENAME} from {LORA_REPO_ID}...")
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
logger.info("Loading LoRA weights...")
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
logger.info("Setting LoRA adapter...")
pipe.set_adapters(["causvid_lora"], adapter_weights=[1.0])
# --- Constants for Dimension Calculation ---
MOD_VALUE = 32
MOD_VALUE_H = MOD_VALUE_W = MOD_VALUE
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
# New fixed max_area for the calculation formula
NEW_FORMULA_MAX_AREA = float(480 * 832)
SLIDER_MIN_H = 128
SLIDER_MAX_H = 896
SLIDER_MIN_W = 128
SLIDER_MAX_W = 896
def _calculate_new_dimensions_wan(pil_image: Image.Image, mod_val: int, calculation_max_area: float,
min_slider_h: int, max_slider_h: int,
min_slider_w: int, max_slider_w: int,
default_h: int, default_w: int) -> tuple[int, int]:
orig_w, orig_h = pil_image.size
if orig_w <= 0 or orig_h <= 0: # Changed to <= 0 for robustness
logger.warning(f"Uploaded image has non-positive width or height ({orig_w}x{orig_h}). Using default slider dimensions.")
return default_h, default_w
aspect_ratio = orig_h / orig_w
# New calculation logic as per user request:
# height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
# width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
# Calculate sqrt terms
sqrt_h_term = np.sqrt(calculation_max_area * aspect_ratio)
sqrt_w_term = np.sqrt(calculation_max_area / aspect_ratio)
# Apply the formula: round(sqrt_term) then floor_division by mod_val, then multiply by mod_val
calc_h = round(sqrt_h_term) // mod_val * mod_val
calc_w = round(sqrt_w_term) // mod_val * mod_val
# Ensure calculated dimensions are at least mod_val (since round(...) // mod_val * mod_val can yield 0 if round(sqrt_term) < mod_val)
calc_h = mod_val if calc_h < mod_val else calc_h
calc_w = mod_val if calc_w < mod_val else calc_w
# Determine effective min/max dimensions from slider limits, ensuring they are multiples of mod_val.
# Slider min values (min_slider_h, min_slider_w) are assumed to be multiples of mod_val.
effective_min_h = min_slider_h
effective_min_w = min_slider_w
# Slider max values (max_slider_h, max_slider_w) might not be multiples of mod_val.
# The actual maximum value a slider can output is (its_max_limit // mod_val) * mod_val.
effective_max_h_from_slider = (max_slider_h // mod_val) * mod_val
effective_max_w_from_slider = (max_slider_w // mod_val) * mod_val
# Clip calc_h and calc_w (which are already multiples of mod_val)
# to the effective slider range (which are also multiples of mod_val).
# The results (new_h, new_w) will therefore also be multiples of mod_val.
new_h = int(np.clip(calc_h, effective_min_h, effective_max_h_from_slider))
new_w = int(np.clip(calc_w, effective_min_w, effective_max_w_from_slider))
logger.info(f"Auto-dim: Original {orig_w}x{orig_h} (AR: {aspect_ratio:.2f}). Max Area for calc: {calculation_max_area}.")
logger.info(f"Auto-dim: Sqrt terms HxW: {sqrt_h_term:.0f}x{sqrt_w_term:.0f}. Calculated (round(sqrt_term)//{mod_val}*{mod_val}): {calc_h}x{calc_w}.")
logger.info(f"Auto-dim: Clamped HxW: {new_h}x{new_w} (Effective H_range:[{effective_min_h}-{effective_max_h_from_slider}], Effective W_range:[{effective_min_w}-{effective_max_w_from_slider}]).")
return new_h, new_w
def handle_image_upload_for_dims_wan(uploaded_pil_image: Image.Image | None, current_h_val: int, current_w_val: int):
if uploaded_pil_image is None:
logger.info("Image cleared. Resetting dimensions to default slider values.")
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
try:
new_h, new_w = _calculate_new_dimensions_wan(
uploaded_pil_image,
MOD_VALUE,
NEW_FORMULA_MAX_AREA, # Use the globally defined max_area for the new formula
SLIDER_MIN_H, SLIDER_MAX_H,
SLIDER_MIN_W, SLIDER_MAX_W,
DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
logger.error(f"Error auto-adjusting H/W from image: {e}", exc_info=True)
# Fallback to default slider values on error, as in the original code
return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
# --- Gradio Interface Function ---
@spaces.GPU
def generate_video(input_image: Image.Image, prompt: str, negative_prompt: str,
height: int, width: int, num_frames: int,
guidance_scale: float, steps: int, fps_for_conditioning_and_export: int,
progress=gr.Progress(track_tqdm=True)):
if input_image is None:
raise gr.Error("Please upload an input image.")
logger.info("Starting video generation...")
logger.info(f" Input Image: Uploaded (Original size: {input_image.size if input_image else 'N/A'})")
logger.info(f" Prompt: {prompt}")
logger.info(f" Negative Prompt: {negative_prompt if negative_prompt else 'None'}")
logger.info(f" Target Output Height: {height}, Target Output Width: {width}")
logger.info(f" Num Frames: {num_frames}, FPS for conditioning & export: {fps_for_conditioning_and_export}")
logger.info(f" Guidance Scale: {guidance_scale}, Steps: {steps}")
target_height = int(height)
target_width = int(width)
num_frames = int(num_frames)
fps_val = int(fps_for_conditioning_and_export)
guidance_scale_val = float(guidance_scale)
steps_val = int(steps)
# Ensure dimensions are compatible.
# With the updated _calculate_new_dimensions_wan, height and width from sliders
# (after image upload auto-adjustment) should already be multiples of MOD_VALUE.
# This block acts as a safeguard if values come from direct slider interaction
# before an image upload, or if something unexpected happens.
if target_height % MOD_VALUE_H != 0:
logger.warning(f"Height {target_height} is not a multiple of {MOD_VALUE_H}. Adjusting...")
target_height = (target_height // MOD_VALUE_H) * MOD_VALUE_H
if target_width % MOD_VALUE_W != 0:
logger.warning(f"Width {target_width} is not a multiple of {MOD_VALUE_W}. Adjusting...")
target_width = (target_width // MOD_VALUE_W) * MOD_VALUE_W
# Ensure minimum size (should already be handled by _calculate_new_dimensions_wan and slider mins)
target_height = max(MOD_VALUE_H, target_height if target_height > 0 else MOD_VALUE_H)
target_width = max(MOD_VALUE_W, target_width if target_width > 0 else MOD_VALUE_W)
resized_image = input_image.resize((target_width, target_height))
logger.info(f" Input image resized to: {resized_image.size} for pipeline input.")
with torch.inference_mode():
output_frames_list = pipe(
image=resized_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=target_height,
width=target_width,
num_frames=num_frames,
guidance_scale=guidance_scale_val,
num_inference_steps=steps_val,
generator=torch.Generator(device="cuda").manual_seed(0) # Consider making seed configurable
).frames[0]
# Using a temporary file for video export
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=fps_val)
logger.info(f"Video successfully generated and saved to {video_path}")
return video_path
# --- Gradio UI Definition ---
default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
penguin_image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png"
with gr.Blocks() as demo:
gr.Markdown(f"""
# Image-to-Video with Wan 2.1 I2V (14B) + CausVid LoRA
Powered by `diffusers` and `{MODEL_ID}`.
Model is loaded into memory when the app starts. This might take a few minutes.
Ensure you have a GPU with sufficient VRAM (e.g., ~24GB+ for these default settings).
Output Height and Width will be multiples of **{MOD_VALUE}**.
Uploading an image will suggest dimensions based on its aspect ratio and a pre-defined target pixel area ({NEW_FORMULA_MAX_AREA:.0f} pixels),
clamped to slider limits.
""")
with gr.Row():
with gr.Column():
input_image_component = gr.Image(type="pil", label="Input Image (will be resized to target H/W)")
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v, lines=3)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(
label="Negative Prompt (Optional)",
value=default_negative_prompt,
lines=3
)
with gr.Row():
height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
with gr.Row():
num_frames_input = gr.Slider(minimum=8, maximum=81, step=1, value=41, label="Number of Frames") # Max 81 for this model
fps_input = gr.Slider(minimum=5, maximum=30, step=1, value=24, label="FPS (for conditioning & export)")
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") # WanI2V is good with few steps
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale") # Low CFG usually better for I2V
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", interactive=False)
# Connect image upload to dimension auto-adjustment
input_image_component.upload(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input], # Pass current slider values for fallback on error
outputs=[height_input, width_input]
)
# Also trigger on clear, though handle_image_upload_for_dims_wan handles None input
input_image_component.clear(
fn=handle_image_upload_for_dims_wan,
inputs=[input_image_component, height_input, width_input],
outputs=[height_input, width_input]
)
inputs_for_click_and_examples = [
input_image_component,
prompt_input,
negative_prompt_input,
height_input,
width_input,
num_frames_input,
guidance_scale_input,
steps_slider,
fps_input
]
generate_button.click(
fn=generate_video,
inputs=inputs_for_click_and_examples,
outputs=video_output
)
gr.Examples(
examples=[
[penguin_image_url, "a penguin playfully dancing in the snow, Antarctica", default_negative_prompt, DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, 41, 1.0, 4, 24],
["https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0001.jpg", "the frog jumps around", default_negative_prompt, 384, 640, 60, 1.0, 4, 24],
],
inputs=inputs_for_click_and_examples,
outputs=video_output,
fn=generate_video,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch(share=True, debug=True)