Spaces:
Running
on
Zero
Running
on
Zero
| from comfy.ldm.modules import attention as comfy_attention | |
| import logging | |
| import comfy.model_patcher | |
| import comfy.utils | |
| import comfy.sd | |
| import torch | |
| import folder_paths | |
| import comfy.model_management as mm | |
| from comfy.cli_args import args | |
| from typing import Optional, Tuple | |
| sageattn_modes = ["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda", "sageattn_qk_int8_pv_fp8_cuda++"] | |
| _initialized = False | |
| _original_functions = {} | |
| if not _initialized: | |
| _original_functions["orig_attention"] = comfy_attention.optimized_attention | |
| _original_functions["original_patch_model"] = comfy.model_patcher.ModelPatcher.patch_model | |
| _original_functions["original_load_lora_for_models"] = comfy.sd.load_lora_for_models | |
| try: | |
| _original_functions["original_qwen_forward"] = comfy.ldm.qwen_image.model.Attention.forward | |
| except: | |
| pass | |
| _initialized = True | |
| class BaseLoaderKJ: | |
| original_linear = None | |
| cublas_patched = False | |
| def _patch_modules(self, patch_cublaslinear, sage_attention): | |
| try: | |
| from comfy.ldm.qwen_image.model import apply_rotary_emb | |
| def qwen_sage_forward( | |
| self, | |
| hidden_states: torch.FloatTensor, # Image stream | |
| encoder_hidden_states: torch.FloatTensor = None, # Text stream | |
| encoder_hidden_states_mask: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| seq_txt = encoder_hidden_states.shape[1] | |
| img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1)) | |
| img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1)) | |
| img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1)) | |
| txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1)) | |
| txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1)) | |
| txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1)) | |
| img_query = self.norm_q(img_query) | |
| img_key = self.norm_k(img_key) | |
| txt_query = self.norm_added_q(txt_query) | |
| txt_key = self.norm_added_k(txt_key) | |
| joint_query = torch.cat([txt_query, img_query], dim=1) | |
| joint_key = torch.cat([txt_key, img_key], dim=1) | |
| joint_value = torch.cat([txt_value, img_value], dim=1) | |
| joint_query = apply_rotary_emb(joint_query, image_rotary_emb) | |
| joint_key = apply_rotary_emb(joint_key, image_rotary_emb) | |
| joint_query = joint_query.flatten(start_dim=2) | |
| joint_key = joint_key.flatten(start_dim=2) | |
| joint_value = joint_value.flatten(start_dim=2) | |
| joint_hidden_states = attention_sage(joint_query, joint_key, joint_value, self.heads, attention_mask) | |
| txt_attn_output = joint_hidden_states[:, :seq_txt, :] | |
| img_attn_output = joint_hidden_states[:, seq_txt:, :] | |
| img_attn_output = self.to_out[0](img_attn_output) | |
| img_attn_output = self.to_out[1](img_attn_output) | |
| txt_attn_output = self.to_add_out(txt_attn_output) | |
| return img_attn_output, txt_attn_output | |
| except: | |
| print("Failed to patch QwenImage attention, Comfy not updated, skipping") | |
| from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight | |
| if sage_attention != "disabled": | |
| print("Patching comfy attention to use sageattn") | |
| from sageattention import sageattn | |
| def set_sage_func(sage_attention): | |
| if sage_attention == "auto": | |
| def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"): | |
| return sageattn(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout) | |
| return func | |
| elif sage_attention == "sageattn_qk_int8_pv_fp16_cuda": | |
| from sageattention import sageattn_qk_int8_pv_fp16_cuda | |
| def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"): | |
| return sageattn_qk_int8_pv_fp16_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32", tensor_layout=tensor_layout) | |
| return func | |
| elif sage_attention == "sageattn_qk_int8_pv_fp16_triton": | |
| from sageattention import sageattn_qk_int8_pv_fp16_triton | |
| def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"): | |
| return sageattn_qk_int8_pv_fp16_triton(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout) | |
| return func | |
| elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda": | |
| from sageattention import sageattn_qk_int8_pv_fp8_cuda | |
| def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"): | |
| return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32", tensor_layout=tensor_layout) | |
| return func | |
| elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda++": | |
| from sageattention import sageattn_qk_int8_pv_fp8_cuda | |
| def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"): | |
| return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp16", tensor_layout=tensor_layout) | |
| return func | |
| sage_func = set_sage_func(sage_attention) | |
| def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False): | |
| if skip_reshape: | |
| b, _, _, dim_head = q.shape | |
| tensor_layout="HND" | |
| else: | |
| b, _, dim_head = q.shape | |
| dim_head //= heads | |
| q, k, v = map( | |
| lambda t: t.view(b, -1, heads, dim_head), | |
| (q, k, v), | |
| ) | |
| tensor_layout="NHD" | |
| if mask is not None: | |
| # add a batch dimension if there isn't already one | |
| if mask.ndim == 2: | |
| mask = mask.unsqueeze(0) | |
| # add a heads dimension if there isn't already one | |
| if mask.ndim == 3: | |
| mask = mask.unsqueeze(1) | |
| out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout) | |
| if tensor_layout == "HND": | |
| if not skip_output_reshape: | |
| out = ( | |
| out.transpose(1, 2).reshape(b, -1, heads * dim_head) | |
| ) | |
| else: | |
| if skip_output_reshape: | |
| out = out.transpose(1, 2) | |
| else: | |
| out = out.reshape(b, -1, heads * dim_head) | |
| return out | |
| comfy_attention.optimized_attention = attention_sage | |
| comfy.ldm.hunyuan_video.model.optimized_attention = attention_sage | |
| comfy.ldm.flux.math.optimized_attention = attention_sage | |
| comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = attention_sage | |
| comfy.ldm.cosmos.blocks.optimized_attention = attention_sage | |
| comfy.ldm.wan.model.optimized_attention = attention_sage | |
| try: | |
| comfy.ldm.qwen_image.model.Attention.forward = qwen_sage_forward | |
| except: | |
| pass | |
| else: | |
| print("Restoring initial comfy attention") | |
| comfy_attention.optimized_attention = _original_functions.get("orig_attention") | |
| comfy.ldm.hunyuan_video.model.optimized_attention = _original_functions.get("orig_attention") | |
| comfy.ldm.flux.math.optimized_attention = _original_functions.get("orig_attention") | |
| comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = _original_functions.get("orig_attention") | |
| comfy.ldm.cosmos.blocks.optimized_attention = _original_functions.get("orig_attention") | |
| comfy.ldm.wan.model.optimized_attention = _original_functions.get("orig_attention") | |
| try: | |
| comfy.ldm.qwen_image.model.Attention.forward = _original_functions.get("original_qwen_forward") | |
| except: | |
| pass | |
| if patch_cublaslinear: | |
| if not BaseLoaderKJ.cublas_patched: | |
| BaseLoaderKJ.original_linear = disable_weight_init.Linear | |
| try: | |
| from cublas_ops import CublasLinear | |
| except ImportError: | |
| raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm") | |
| class PatchedLinear(CublasLinear, CastWeightBiasOp): | |
| def reset_parameters(self): | |
| pass | |
| def forward_comfy_cast_weights(self, input): | |
| weight, bias = cast_bias_weight(self, input) | |
| return torch.nn.functional.linear(input, weight, bias) | |
| def forward(self, *args, **kwargs): | |
| if self.comfy_cast_weights: | |
| return self.forward_comfy_cast_weights(*args, **kwargs) | |
| else: | |
| return super().forward(*args, **kwargs) | |
| disable_weight_init.Linear = PatchedLinear | |
| BaseLoaderKJ.cublas_patched = True | |
| else: | |
| if BaseLoaderKJ.cublas_patched: | |
| disable_weight_init.Linear = BaseLoaderKJ.original_linear | |
| BaseLoaderKJ.cublas_patched = False | |
| from comfy.patcher_extension import CallbacksMP | |
| class PathchSageAttentionKJ(BaseLoaderKJ): | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "sage_attention": (sageattn_modes, {"default": False, "tooltip": "Global patch comfy attention to use sageattn, once patched to revert back to normal you would need to run this node again with disabled option."}), | |
| }} | |
| RETURN_TYPES = ("MODEL", ) | |
| FUNCTION = "patch" | |
| DESCRIPTION = "Experimental node for patching attention mode. This doesn't use the model patching system and thus can't be disabled without running the node again with 'disabled' option." | |
| EXPERIMENTAL = True | |
| CATEGORY = "KJNodes/experimental" | |
| def patch(self, model, sage_attention): | |
| model_clone = model.clone() | |
| def patch_attention_enable(model): | |
| self._patch_modules(False, sage_attention) | |
| def patch_attention_disable(model): | |
| self._patch_modules(False, "disabled") | |
| model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_attention_enable) | |
| model_clone.add_callback(CallbacksMP.ON_CLEANUP, patch_attention_disable) | |
| return model_clone, | |
| class CheckpointLoaderKJ(BaseLoaderKJ): | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}), | |
| "weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp16", "bf16", "fp32"],), | |
| "compute_dtype": (["default", "fp16", "bf16", "fp32"], {"default": "default", "tooltip": "The compute dtype to use for the model."}), | |
| "patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}), | |
| "sage_attention": (sageattn_modes, {"default": False, "tooltip": "Patch comfy attention to use sageattn."}), | |
| "enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}), | |
| }} | |
| RETURN_TYPES = ("MODEL", "CLIP", "VAE") | |
| FUNCTION = "patch" | |
| DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear." | |
| EXPERIMENTAL = True | |
| CATEGORY = "KJNodes/experimental" | |
| def patch(self, ckpt_name, weight_dtype, compute_dtype, patch_cublaslinear, sage_attention, enable_fp16_accumulation): | |
| DTYPE_MAP = { | |
| "fp8_e4m3fn": torch.float8_e4m3fn, | |
| "fp8_e5m2": torch.float8_e5m2, | |
| "fp16": torch.float16, | |
| "bf16": torch.bfloat16, | |
| "fp32": torch.float32 | |
| } | |
| model_options = {} | |
| if dtype := DTYPE_MAP.get(weight_dtype): | |
| model_options["dtype"] = dtype | |
| print(f"Setting {ckpt_name} weight dtype to {dtype}") | |
| if weight_dtype == "fp8_e4m3fn_fast": | |
| model_options["dtype"] = torch.float8_e4m3fn | |
| model_options["fp8_optimizations"] = True | |
| ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name) | |
| sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True) | |
| model, clip, vae = self.load_state_dict_guess_config( | |
| sd, | |
| output_vae=True, | |
| output_clip=True, | |
| embedding_directory=folder_paths.get_folder_paths("embeddings"), | |
| metadata=metadata, | |
| model_options=model_options) | |
| if dtype := DTYPE_MAP.get(compute_dtype): | |
| model.set_model_compute_dtype(dtype) | |
| model.force_cast_weights = False | |
| print(f"Setting {ckpt_name} compute dtype to {dtype}") | |
| if enable_fp16_accumulation: | |
| if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"): | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = True | |
| else: | |
| raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently") | |
| else: | |
| if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"): | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = False | |
| def patch_attention(model): | |
| self._patch_modules(patch_cublaslinear, sage_attention) | |
| model.add_callback(CallbacksMP.ON_PRE_RUN,patch_attention) | |
| return model, clip, vae | |
| def load_state_dict_guess_config(self, sd, output_vae=True, output_clip=True, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None): | |
| from comfy.sd import load_diffusion_model_state_dict, model_detection, VAE, CLIP | |
| clip = None | |
| vae = None | |
| model = None | |
| model_patcher = None | |
| diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) | |
| parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix) | |
| weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix) | |
| load_device = mm.get_torch_device() | |
| model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata) | |
| if model_config is None: | |
| logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.") | |
| diffusion_model = load_diffusion_model_state_dict(sd, model_options={}) | |
| if diffusion_model is None: | |
| return None | |
| return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used' | |
| unet_weight_dtype = list(model_config.supported_inference_dtypes) | |
| if model_config.scaled_fp8 is not None: | |
| weight_dtype = None | |
| model_config.custom_operations = model_options.get("custom_operations", None) | |
| unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None)) | |
| if unet_dtype is None: | |
| unet_dtype = mm.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype) | |
| manual_cast_dtype = mm.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) | |
| model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) | |
| if output_model: | |
| inital_load_device = mm.unet_inital_load_device(parameters, unet_dtype) | |
| model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device) | |
| model.load_model_weights(sd, diffusion_model_prefix) | |
| if output_vae: | |
| vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True) | |
| vae_sd = model_config.process_vae_state_dict(vae_sd) | |
| vae = VAE(sd=vae_sd, metadata=metadata) | |
| if output_clip: | |
| clip_target = model_config.clip_target(state_dict=sd) | |
| if clip_target is not None: | |
| clip_sd = model_config.process_clip_state_dict(sd) | |
| if len(clip_sd) > 0: | |
| parameters = comfy.utils.calculate_parameters(clip_sd) | |
| clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options) | |
| m, u = clip.load_sd(clip_sd, full_model=True) | |
| if len(m) > 0: | |
| m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m)) | |
| if len(m_filter) > 0: | |
| logging.warning("clip missing: {}".format(m)) | |
| else: | |
| logging.debug("clip missing: {}".format(m)) | |
| if len(u) > 0: | |
| logging.debug("clip unexpected {}:".format(u)) | |
| else: | |
| logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.") | |
| left_over = sd.keys() | |
| if len(left_over) > 0: | |
| logging.debug("left over keys: {}".format(left_over)) | |
| if output_model: | |
| model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=mm.unet_offload_device()) | |
| if inital_load_device != torch.device("cpu"): | |
| logging.info("loaded diffusion model directly to GPU") | |
| mm.load_models_gpu([model_patcher], force_full_load=True) | |
| return (model_patcher, clip, vae) | |
| class DiffusionModelSelector(): | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}), | |
| }, | |
| } | |
| RETURN_TYPES = ("STRING",) | |
| RETURN_NAMES = ("model_path",) | |
| FUNCTION = "get_path" | |
| DESCRIPTION = "Returns the path to the model as a string." | |
| EXPERIMENTAL = True | |
| CATEGORY = "KJNodes/experimental" | |
| def get_path(self, model_name): | |
| model_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name) | |
| return (model_path,) | |
| class DiffusionModelLoaderKJ(BaseLoaderKJ): | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}), | |
| "weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp16", "bf16", "fp32"],), | |
| "compute_dtype": (["default", "fp16", "bf16", "fp32"], {"default": "default", "tooltip": "The compute dtype to use for the model."}), | |
| "patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}), | |
| "sage_attention": (sageattn_modes, {"default": False, "tooltip": "Patch comfy attention to use sageattn."}), | |
| "enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}), | |
| }, | |
| "optional": { | |
| "extra_state_dict": ("STRING", {"forceInput": True, "tooltip": "The full path to an additional state dict to load, this will be merged with the main state dict. Useful for example to add VACE module to a WanVideoModel. You can use DiffusionModelSelector to easily get the path."}), | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch_and_load" | |
| DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear." | |
| EXPERIMENTAL = True | |
| CATEGORY = "KJNodes/experimental" | |
| def patch_and_load(self, model_name, weight_dtype, compute_dtype, patch_cublaslinear, sage_attention, enable_fp16_accumulation, extra_state_dict=None): | |
| DTYPE_MAP = { | |
| "fp8_e4m3fn": torch.float8_e4m3fn, | |
| "fp8_e5m2": torch.float8_e5m2, | |
| "fp16": torch.float16, | |
| "bf16": torch.bfloat16, | |
| "fp32": torch.float32 | |
| } | |
| model_options = {} | |
| if dtype := DTYPE_MAP.get(weight_dtype): | |
| model_options["dtype"] = dtype | |
| print(f"Setting {model_name} weight dtype to {dtype}") | |
| if weight_dtype == "fp8_e4m3fn_fast": | |
| model_options["dtype"] = torch.float8_e4m3fn | |
| model_options["fp8_optimizations"] = True | |
| if enable_fp16_accumulation: | |
| if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"): | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = True | |
| else: | |
| raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently") | |
| else: | |
| if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"): | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = False | |
| unet_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name) | |
| sd = comfy.utils.load_torch_file(unet_path) | |
| if extra_state_dict is not None: | |
| extra_sd = comfy.utils.load_torch_file(extra_state_dict) | |
| sd.update(extra_sd) | |
| del extra_sd | |
| model = comfy.sd.load_diffusion_model_state_dict(sd, model_options=model_options) | |
| if dtype := DTYPE_MAP.get(compute_dtype): | |
| model.set_model_compute_dtype(dtype) | |
| model.force_cast_weights = False | |
| print(f"Setting {model_name} compute dtype to {dtype}") | |
| def patch_attention(model): | |
| self._patch_modules(patch_cublaslinear, sage_attention) | |
| model.add_callback(CallbacksMP.ON_PRE_RUN,patch_attention) | |
| return (model,) | |
| class ModelPatchTorchSettings: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| DESCRIPTION = "Adds callbacks to model to set torch settings before and after running the model." | |
| EXPERIMENTAL = True | |
| CATEGORY = "KJNodes/experimental" | |
| def patch(self, model, enable_fp16_accumulation): | |
| model_clone = model.clone() | |
| def patch_enable_fp16_accum(model): | |
| print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = True") | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = True | |
| def patch_disable_fp16_accum(model): | |
| print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = False") | |
| torch.backends.cuda.matmul.allow_fp16_accumulation = False | |
| if enable_fp16_accumulation: | |
| if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"): | |
| model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_enable_fp16_accum) | |
| model_clone.add_callback(CallbacksMP.ON_CLEANUP, patch_disable_fp16_accum) | |
| else: | |
| raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently") | |
| else: | |
| if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"): | |
| model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_disable_fp16_accum) | |
| else: | |
| raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently") | |
| return (model_clone,) | |
| def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False): | |
| with self.use_ejected(): | |
| device_to = mm.get_torch_device() | |
| full_load_override = getattr(self.model, "full_load_override", "auto") | |
| if full_load_override in ["enabled", "disabled"]: | |
| full_load = full_load_override == "enabled" | |
| else: | |
| full_load = lowvram_model_memory == 0 | |
| self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load) | |
| for k in self.object_patches: | |
| old = comfy.utils.set_attr(self.model, k, self.object_patches[k]) | |
| if k not in self.object_patches_backup: | |
| self.object_patches_backup[k] = old | |
| self.inject_model() | |
| return self.model | |
| def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip): | |
| patch_keys = list(model.object_patches_backup.keys()) | |
| for k in patch_keys: | |
| #print("backing up object patch: ", k) | |
| comfy.utils.set_attr(model.model, k, model.object_patches_backup[k]) | |
| key_map = {} | |
| if model is not None: | |
| key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) | |
| if clip is not None: | |
| key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) | |
| lora = comfy.lora_convert.convert_lora(lora) | |
| loaded = comfy.lora.load_lora(lora, key_map) | |
| #print(temp_object_patches_backup) | |
| if model is not None: | |
| new_modelpatcher = model.clone() | |
| k = new_modelpatcher.add_patches(loaded, strength_model) | |
| else: | |
| k = () | |
| new_modelpatcher = None | |
| if clip is not None: | |
| new_clip = clip.clone() | |
| k1 = new_clip.add_patches(loaded, strength_clip) | |
| else: | |
| k1 = () | |
| new_clip = None | |
| k = set(k) | |
| k1 = set(k1) | |
| for x in loaded: | |
| if (x not in k) and (x not in k1): | |
| print("NOT LOADED {}".format(x)) | |
| if patch_keys: | |
| if hasattr(model.model, "compile_settings"): | |
| compile_settings = getattr(model.model, "compile_settings") | |
| print("compile_settings: ", compile_settings) | |
| for k in patch_keys: | |
| if "diffusion_model." in k: | |
| # Remove the prefix to get the attribute path | |
| key = k.replace('diffusion_model.', '') | |
| attributes = key.split('.') | |
| # Start with the diffusion_model object | |
| block = model.get_model_object("diffusion_model") | |
| # Navigate through the attributes to get to the block | |
| for attr in attributes: | |
| if attr.isdigit(): | |
| block = block[int(attr)] | |
| else: | |
| block = getattr(block, attr) | |
| # Compile the block | |
| compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"]) | |
| # Add the compiled block back as an object patch | |
| model.add_object_patch(k, compiled_block) | |
| return (new_modelpatcher, new_clip) | |
| class PatchModelPatcherOrder: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}), | |
| "full_load": (["enabled", "disabled", "auto"], {"default": "auto", "tooltip": "Disabling may help with memory issues when loading large models, when changing this you should probably force model reload to avoid issues!"}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/experimental" | |
| DESCRIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, patch_order, full_load): | |
| comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {} | |
| setattr(model.model, "full_load_override", full_load) | |
| if patch_order == "weight_patch_first": | |
| comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model | |
| comfy.sd.load_lora_for_models = patched_load_lora_for_models | |
| else: | |
| comfy.model_patcher.ModelPatcher.patch_model = _original_functions.get("original_patch_model") | |
| comfy.sd.load_lora_for_models = _original_functions.get("original_load_lora_for_models") | |
| return model, | |
| class TorchCompileModelFluxAdvanced: | |
| def __init__(self): | |
| self._compiled = False | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor", "cudagraphs"],), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "double_blocks": ("STRING", {"default": "0-18", "multiline": True}), | |
| "single_blocks": ("STRING", {"default": "0-37", "multiline": True}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| }, | |
| "optional": { | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| DEPRECATED = True | |
| def parse_blocks(self, blocks_str): | |
| blocks = [] | |
| for part in blocks_str.split(','): | |
| part = part.strip() | |
| if '-' in part: | |
| start, end = map(int, part.split('-')) | |
| blocks.extend(range(start, end + 1)) | |
| else: | |
| blocks.append(int(part)) | |
| return blocks | |
| def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic, dynamo_cache_size_limit): | |
| single_block_list = self.parse_blocks(single_blocks) | |
| double_block_list = self.parse_blocks(double_blocks) | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| if not self._compiled: | |
| try: | |
| for i, block in enumerate(diffusion_model.double_blocks): | |
| if i in double_block_list: | |
| #print("Compiling double_block", i) | |
| m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)) | |
| for i, block in enumerate(diffusion_model.single_blocks): | |
| if i in single_block_list: | |
| #print("Compiling single block", i) | |
| m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)) | |
| self._compiled = True | |
| compile_settings = { | |
| "backend": backend, | |
| "mode": mode, | |
| "fullgraph": fullgraph, | |
| "dynamic": dynamic, | |
| } | |
| setattr(m.model, "compile_settings", compile_settings) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| # rest of the layers that are not patched | |
| # diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| class TorchCompileModelFluxAdvancedV2: | |
| def __init__(self): | |
| self._compiled = False | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor", "cudagraphs"],), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}), | |
| "single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| }, | |
| "optional": { | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic, dynamo_cache_size_limit): | |
| from comfy_api.torch_helpers import set_torch_compile_wrapper | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| compile_key_list = [] | |
| try: | |
| if double_blocks: | |
| for i, block in enumerate(diffusion_model.double_blocks): | |
| compile_key_list.append(f"diffusion_model.double_blocks.{i}") | |
| if single_blocks: | |
| for i, block in enumerate(diffusion_model.single_blocks): | |
| compile_key_list.append(f"diffusion_model.single_blocks.{i}") | |
| set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| # rest of the layers that are not patched | |
| # diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| # diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend) | |
| class TorchCompileModelHyVideo: | |
| def __init__(self): | |
| self._compiled = False | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor","cudagraphs"], {"default": "inductor"}), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), | |
| "compile_single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}), | |
| "compile_double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}), | |
| "compile_txt_in": ("BOOLEAN", {"default": False, "tooltip": "Compile txt_in layers"}), | |
| "compile_vector_in": ("BOOLEAN", {"default": False, "tooltip": "Compile vector_in layers"}), | |
| "compile_final_layer": ("BOOLEAN", {"default": False, "tooltip": "Compile final layer"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_single_blocks, compile_double_blocks, compile_txt_in, compile_vector_in, compile_final_layer): | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| if not self._compiled: | |
| try: | |
| if compile_single_blocks: | |
| for i, block in enumerate(diffusion_model.single_blocks): | |
| compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch(f"diffusion_model.single_blocks.{i}", compiled_block) | |
| if compile_double_blocks: | |
| for i, block in enumerate(diffusion_model.double_blocks): | |
| compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch(f"diffusion_model.double_blocks.{i}", compiled_block) | |
| if compile_txt_in: | |
| compiled_block = torch.compile(diffusion_model.txt_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch("diffusion_model.txt_in", compiled_block) | |
| if compile_vector_in: | |
| compiled_block = torch.compile(diffusion_model.vector_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch("diffusion_model.vector_in", compiled_block) | |
| if compile_final_layer: | |
| compiled_block = torch.compile(diffusion_model.final_layer, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch("diffusion_model.final_layer", compiled_block) | |
| self._compiled = True | |
| compile_settings = { | |
| "backend": backend, | |
| "mode": mode, | |
| "fullgraph": fullgraph, | |
| "dynamic": dynamic, | |
| } | |
| setattr(m.model, "compile_settings", compile_settings) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| class TorchCompileModelWanVideo: | |
| def __init__(self): | |
| self._compiled = False | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor","cudagraphs"], {"default": "inductor"}), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), | |
| "compile_transformer_blocks_only": ("BOOLEAN", {"default": False, "tooltip": "Compile only transformer blocks"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| DEPRECATED = True | |
| def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only): | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| try: | |
| if compile_transformer_blocks_only: | |
| for i, block in enumerate(diffusion_model.blocks): | |
| if hasattr(block, "_orig_mod"): | |
| block = block._orig_mod | |
| compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch(f"diffusion_model.blocks.{i}", compiled_block) | |
| else: | |
| compiled_model = torch.compile(diffusion_model, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode) | |
| m.add_object_patch("diffusion_model", compiled_model) | |
| compile_settings = { | |
| "backend": backend, | |
| "mode": mode, | |
| "fullgraph": fullgraph, | |
| "dynamic": dynamic, | |
| } | |
| setattr(m.model, "compile_settings", compile_settings) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| class TorchCompileModelWanVideoV2: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor","cudagraphs"], {"default": "inductor"}), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| "compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}), | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only): | |
| from comfy_api.torch_helpers import set_torch_compile_wrapper | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| try: | |
| if compile_transformer_blocks_only: | |
| compile_key_list = [] | |
| for i, block in enumerate(diffusion_model.blocks): | |
| compile_key_list.append(f"diffusion_model.blocks.{i}") | |
| else: | |
| compile_key_list =["diffusion_model"] | |
| set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| class TorchCompileModelQwenImage: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor","cudagraphs"], {"default": "inductor"}), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| "compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}), | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only): | |
| from comfy_api.torch_helpers import set_torch_compile_wrapper | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| try: | |
| if compile_transformer_blocks_only: | |
| compile_key_list = [] | |
| for i, block in enumerate(diffusion_model.transformer_blocks): | |
| compile_key_list.append(f"diffusion_model.transformer_blocks.{i}") | |
| else: | |
| compile_key_list =["diffusion_model"] | |
| set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| class TorchCompileVAE: | |
| def __init__(self): | |
| self._compiled_encoder = False | |
| self._compiled_decoder = False | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "vae": ("VAE",), | |
| "backend": (["inductor", "cudagraphs"],), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}), | |
| "compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}), | |
| }} | |
| RETURN_TYPES = ("VAE",) | |
| FUNCTION = "compile" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder): | |
| if compile_encoder: | |
| if not self._compiled_encoder: | |
| encoder_name = "encoder" | |
| if hasattr(vae.first_stage_model, "taesd_encoder"): | |
| encoder_name = "taesd_encoder" | |
| try: | |
| setattr( | |
| vae.first_stage_model, | |
| encoder_name, | |
| torch.compile( | |
| getattr(vae.first_stage_model, encoder_name), | |
| mode=mode, | |
| fullgraph=fullgraph, | |
| backend=backend, | |
| ), | |
| ) | |
| self._compiled_encoder = True | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| if compile_decoder: | |
| if not self._compiled_decoder: | |
| decoder_name = "decoder" | |
| if hasattr(vae.first_stage_model, "taesd_decoder"): | |
| decoder_name = "taesd_decoder" | |
| try: | |
| setattr( | |
| vae.first_stage_model, | |
| decoder_name, | |
| torch.compile( | |
| getattr(vae.first_stage_model, decoder_name), | |
| mode=mode, | |
| fullgraph=fullgraph, | |
| backend=backend, | |
| ), | |
| ) | |
| self._compiled_decoder = True | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (vae, ) | |
| class TorchCompileControlNet: | |
| def __init__(self): | |
| self._compiled= False | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "controlnet": ("CONTROL_NET",), | |
| "backend": (["inductor", "cudagraphs"],), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| }} | |
| RETURN_TYPES = ("CONTROL_NET",) | |
| FUNCTION = "compile" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def compile(self, controlnet, backend, mode, fullgraph): | |
| if not self._compiled: | |
| try: | |
| # for i, block in enumerate(controlnet.control_model.double_blocks): | |
| # print("Compiling controlnet double_block", i) | |
| # controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend) | |
| controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend) | |
| self._compiled = True | |
| except: | |
| self._compiled = False | |
| raise RuntimeError("Failed to compile model") | |
| return (controlnet, ) | |
| class TorchCompileLTXModel: | |
| def __init__(self): | |
| self._compiled = False | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor", "cudagraphs"],), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, backend, mode, fullgraph, dynamic): | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| if not self._compiled: | |
| try: | |
| for i, block in enumerate(diffusion_model.transformer_blocks): | |
| compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend) | |
| m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block) | |
| self._compiled = True | |
| compile_settings = { | |
| "backend": backend, | |
| "mode": mode, | |
| "fullgraph": fullgraph, | |
| "dynamic": dynamic, | |
| } | |
| setattr(m.model, "compile_settings", compile_settings) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| class TorchCompileCosmosModel: | |
| def __init__(self): | |
| self._compiled = False | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "backend": (["inductor", "cudagraphs"],), | |
| "fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), | |
| "mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), | |
| "dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), | |
| "dynamo_cache_size_limit": ("INT", {"default": 64, "tooltip": "Set the dynamo cache size limit"}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/torchcompile" | |
| EXPERIMENTAL = True | |
| def patch(self, model, backend, mode, fullgraph, dynamic, dynamo_cache_size_limit): | |
| m = model.clone() | |
| diffusion_model = m.get_model_object("diffusion_model") | |
| torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit | |
| if not self._compiled: | |
| try: | |
| for name, block in diffusion_model.blocks.items(): | |
| #print(f"Compiling block {name}") | |
| compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend) | |
| m.add_object_patch(f"diffusion_model.blocks.{name}", compiled_block) | |
| #diffusion_model.blocks[name] = compiled_block | |
| self._compiled = True | |
| compile_settings = { | |
| "backend": backend, | |
| "mode": mode, | |
| "fullgraph": fullgraph, | |
| "dynamic": dynamic, | |
| } | |
| setattr(m.model, "compile_settings", compile_settings) | |
| except: | |
| raise RuntimeError("Failed to compile model") | |
| return (m, ) | |
| #teacache | |
| try: | |
| from comfy.ldm.wan.model import sinusoidal_embedding_1d | |
| except: | |
| pass | |
| from einops import repeat | |
| from unittest.mock import patch | |
| from contextlib import nullcontext | |
| import numpy as np | |
| def relative_l1_distance(last_tensor, current_tensor): | |
| l1_distance = torch.abs(last_tensor - current_tensor).mean() | |
| norm = torch.abs(last_tensor).mean() | |
| relative_l1_distance = l1_distance / norm | |
| return relative_l1_distance.to(torch.float32) | |
| def tea_cache(self, x, e0, e, transformer_options): | |
| #teacache for cond and uncond separately | |
| rel_l1_thresh = transformer_options["rel_l1_thresh"] | |
| is_cond = True if transformer_options["cond_or_uncond"] == [0] else False | |
| should_calc = True | |
| suffix = "cond" if is_cond else "uncond" | |
| # Init cache dict if not exists | |
| if not hasattr(self, 'teacache_state'): | |
| self.teacache_state = { | |
| 'cond': {'accumulated_rel_l1_distance': 0, 'prev_input': None, | |
| 'teacache_skipped_steps': 0, 'previous_residual': None}, | |
| 'uncond': {'accumulated_rel_l1_distance': 0, 'prev_input': None, | |
| 'teacache_skipped_steps': 0, 'previous_residual': None} | |
| } | |
| logging.info("\nTeaCache: Initialized") | |
| cache = self.teacache_state[suffix] | |
| if cache['prev_input'] is not None: | |
| if transformer_options["coefficients"] == []: | |
| temb_relative_l1 = relative_l1_distance(cache['prev_input'], e0) | |
| curr_acc_dist = cache['accumulated_rel_l1_distance'] + temb_relative_l1 | |
| else: | |
| rescale_func = np.poly1d(transformer_options["coefficients"]) | |
| curr_acc_dist = cache['accumulated_rel_l1_distance'] + rescale_func(((e-cache['prev_input']).abs().mean() / cache['prev_input'].abs().mean()).cpu().item()) | |
| try: | |
| if curr_acc_dist < rel_l1_thresh: | |
| should_calc = False | |
| cache['accumulated_rel_l1_distance'] = curr_acc_dist | |
| else: | |
| should_calc = True | |
| cache['accumulated_rel_l1_distance'] = 0 | |
| except: | |
| should_calc = True | |
| cache['accumulated_rel_l1_distance'] = 0 | |
| if transformer_options["coefficients"] == []: | |
| cache['prev_input'] = e0.clone().detach() | |
| else: | |
| cache['prev_input'] = e.clone().detach() | |
| if not should_calc: | |
| x += cache['previous_residual'].to(x.device) | |
| cache['teacache_skipped_steps'] += 1 | |
| #print(f"TeaCache: Skipping {suffix} step") | |
| return should_calc, cache | |
| def teacache_wanvideo_vace_forward_orig(self, x, t, context, vace_context, vace_strength, clip_fea=None, freqs=None, transformer_options={}, **kwargs): | |
| # embeddings | |
| x = self.patch_embedding(x.float()).to(x.dtype) | |
| grid_sizes = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) | |
| # time embeddings | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| # context | |
| context = self.text_embedding(context) | |
| context_img_len = None | |
| if clip_fea is not None: | |
| if self.img_emb is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| context_img_len = clip_fea.shape[-2] | |
| orig_shape = list(vace_context.shape) | |
| vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:]) | |
| c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype) | |
| c = c.flatten(2).transpose(1, 2) | |
| c = list(c.split(orig_shape[0], dim=0)) | |
| if not transformer_options: | |
| raise RuntimeError("Can't access transformer_options, this requires ComfyUI nightly version from Mar 14, 2025 or later") | |
| teacache_enabled = transformer_options.get("teacache_enabled", False) | |
| if not teacache_enabled: | |
| should_calc = True | |
| else: | |
| should_calc, cache = tea_cache(self, x, e0, e, transformer_options) | |
| if should_calc: | |
| original_x = x.clone().detach() | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.blocks): | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap, "transformer_options": transformer_options}) | |
| x = out["img"] | |
| else: | |
| x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| ii = self.vace_layers_mapping.get(i, None) | |
| if ii is not None: | |
| for iii in range(len(c)): | |
| c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=original_x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| x += c_skip * vace_strength[iii] | |
| del c_skip | |
| if teacache_enabled: | |
| cache['previous_residual'] = (x - original_x).to(transformer_options["teacache_device"]) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return x | |
| def teacache_wanvideo_forward_orig(self, x, t, context, clip_fea=None, freqs=None, transformer_options={}, **kwargs): | |
| # embeddings | |
| x = self.patch_embedding(x.float()).to(x.dtype) | |
| grid_sizes = x.shape[2:] | |
| x = x.flatten(2).transpose(1, 2) | |
| # time embeddings | |
| e = self.time_embedding( | |
| sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) | |
| e0 = self.time_projection(e).unflatten(1, (6, self.dim)) | |
| # context | |
| context = self.text_embedding(context) | |
| context_img_len = None | |
| if clip_fea is not None: | |
| if self.img_emb is not None: | |
| context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
| context = torch.concat([context_clip, context], dim=1) | |
| context_img_len = clip_fea.shape[-2] | |
| teacache_enabled = transformer_options.get("teacache_enabled", False) | |
| if not teacache_enabled: | |
| should_calc = True | |
| else: | |
| should_calc, cache = tea_cache(self, x, e0, e, transformer_options) | |
| if should_calc: | |
| original_x = x.clone().detach() | |
| patches_replace = transformer_options.get("patches_replace", {}) | |
| blocks_replace = patches_replace.get("dit", {}) | |
| for i, block in enumerate(self.blocks): | |
| if ("double_block", i) in blocks_replace: | |
| def block_wrap(args): | |
| out = {} | |
| out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len) | |
| return out | |
| out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap, "transformer_options": transformer_options}) | |
| x = out["img"] | |
| else: | |
| x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len) | |
| if teacache_enabled: | |
| cache['previous_residual'] = (x - original_x).to(transformer_options["teacache_device"]) | |
| # head | |
| x = self.head(x, e) | |
| # unpatchify | |
| x = self.unpatchify(x, grid_sizes) | |
| return x | |
| class WanVideoTeaCacheKJ: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "rel_l1_thresh": ("FLOAT", {"default": 0.275, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Threshold for to determine when to apply the cache, compromise between speed and accuracy. When using coefficients a good value range is something between 0.2-0.4 for all but 1.3B model, which should be about 10 times smaller, same as when not using coefficients."}), | |
| "start_percent": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The start percentage of the steps to use with TeaCache."}), | |
| "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The end percentage of the steps to use with TeaCache."}), | |
| "cache_device": (["main_device", "offload_device"], {"default": "offload_device", "tooltip": "Device to cache to"}), | |
| "coefficients": (["disabled", "1.3B", "14B", "i2v_480", "i2v_720"], {"default": "i2v_480", "tooltip": "Coefficients for rescaling the relative l1 distance, if disabled the threshold value should be about 10 times smaller than the value used with coefficients."}), | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| RETURN_NAMES = ("model",) | |
| FUNCTION = "patch_teacache" | |
| CATEGORY = "KJNodes/teacache" | |
| DESCRIPTION = """ | |
| Patch WanVideo model to use TeaCache. Speeds up inference by caching the output and | |
| applying it instead of doing the step. Best results are achieved by choosing the | |
| appropriate coefficients for the model. Early steps should never be skipped, with too | |
| aggressive values this can happen and the motion suffers. Starting later can help with that too. | |
| When NOT using coefficients, the threshold value should be | |
| about 10 times smaller than the value used with coefficients. | |
| Official recommended values https://github.com/ali-vilab/TeaCache/tree/main/TeaCache4Wan2.1: | |
| <pre style='font-family:monospace'> | |
| +-------------------+--------+---------+--------+ | |
| | Model | Low | Medium | High | | |
| +-------------------+--------+---------+--------+ | |
| | Wan2.1 t2v 1.3B | 0.05 | 0.07 | 0.08 | | |
| | Wan2.1 t2v 14B | 0.14 | 0.15 | 0.20 | | |
| | Wan2.1 i2v 480P | 0.13 | 0.19 | 0.26 | | |
| | Wan2.1 i2v 720P | 0.18 | 0.20 | 0.30 | | |
| +-------------------+--------+---------+--------+ | |
| </pre> | |
| """ | |
| EXPERIMENTAL = True | |
| def patch_teacache(self, model, rel_l1_thresh, start_percent, end_percent, cache_device, coefficients): | |
| if rel_l1_thresh == 0: | |
| return (model,) | |
| if coefficients == "disabled" and rel_l1_thresh > 0.1: | |
| logging.warning("Threshold value is too high for TeaCache without coefficients, consider using coefficients for better results.") | |
| if coefficients != "disabled" and rel_l1_thresh < 0.1 and "1.3B" not in coefficients: | |
| logging.warning("Threshold value is too low for TeaCache with coefficients, consider using higher threshold value for better results.") | |
| # type_str = str(type(model.model.model_config).__name__) | |
| #if model.model.diffusion_model.dim == 1536: | |
| # model_type ="1.3B" | |
| # else: | |
| # if "WAN21_T2V" in type_str: | |
| # model_type = "14B" | |
| # elif "WAN21_I2V" in type_str: | |
| # model_type = "i2v_480" | |
| # else: | |
| # model_type = "i2v_720" #how to detect this? | |
| teacache_coefficients_map = { | |
| "disabled": [], | |
| "1.3B": [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01], | |
| "14B": [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404], | |
| "i2v_480": [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01], | |
| "i2v_720": [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683], | |
| } | |
| coefficients = teacache_coefficients_map[coefficients] | |
| teacache_device = mm.get_torch_device() if cache_device == "main_device" else mm.unet_offload_device() | |
| model_clone = model.clone() | |
| if 'transformer_options' not in model_clone.model_options: | |
| model_clone.model_options['transformer_options'] = {} | |
| model_clone.model_options["transformer_options"]["rel_l1_thresh"] = rel_l1_thresh | |
| model_clone.model_options["transformer_options"]["teacache_device"] = teacache_device | |
| model_clone.model_options["transformer_options"]["coefficients"] = coefficients | |
| diffusion_model = model_clone.get_model_object("diffusion_model") | |
| def outer_wrapper(start_percent, end_percent): | |
| def unet_wrapper_function(model_function, kwargs): | |
| input = kwargs["input"] | |
| timestep = kwargs["timestep"] | |
| c = kwargs["c"] | |
| sigmas = c["transformer_options"]["sample_sigmas"] | |
| cond_or_uncond = kwargs["cond_or_uncond"] | |
| last_step = (len(sigmas) - 1) | |
| matched_step_index = (sigmas == timestep[0] ).nonzero() | |
| if len(matched_step_index) > 0: | |
| current_step_index = matched_step_index.item() | |
| else: | |
| for i in range(len(sigmas) - 1): | |
| # walk from beginning of steps until crossing the timestep | |
| if (sigmas[i] - timestep[0]) * (sigmas[i + 1] - timestep[0]) <= 0: | |
| current_step_index = i | |
| break | |
| else: | |
| current_step_index = 0 | |
| if current_step_index == 0: | |
| if (len(cond_or_uncond) == 1 and cond_or_uncond[0] == 1) or len(cond_or_uncond) == 2: | |
| if hasattr(diffusion_model, "teacache_state"): | |
| delattr(diffusion_model, "teacache_state") | |
| logging.info("\nResetting TeaCache state") | |
| current_percent = current_step_index / (len(sigmas) - 1) | |
| c["transformer_options"]["current_percent"] = current_percent | |
| if start_percent <= current_percent <= end_percent: | |
| c["transformer_options"]["teacache_enabled"] = True | |
| forward_function = teacache_wanvideo_vace_forward_orig if hasattr(diffusion_model, "vace_layers") else teacache_wanvideo_forward_orig | |
| context = patch.multiple( | |
| diffusion_model, | |
| forward_orig=forward_function.__get__(diffusion_model, diffusion_model.__class__) | |
| ) | |
| with context: | |
| out = model_function(input, timestep, **c) | |
| if current_step_index+1 == last_step and hasattr(diffusion_model, "teacache_state"): | |
| if len(cond_or_uncond) == 1 and cond_or_uncond[0] == 0: | |
| skipped_steps_cond = diffusion_model.teacache_state["cond"]["teacache_skipped_steps"] | |
| skipped_steps_uncond = diffusion_model.teacache_state["uncond"]["teacache_skipped_steps"] | |
| logging.info("-----------------------------------") | |
| logging.info(f"TeaCache skipped:") | |
| logging.info(f"{skipped_steps_cond} cond steps") | |
| logging.info(f"{skipped_steps_uncond} uncond step") | |
| logging.info(f"out of {last_step} steps") | |
| logging.info("-----------------------------------") | |
| elif len(cond_or_uncond) == 2: | |
| skipped_steps_cond = diffusion_model.teacache_state["uncond"]["teacache_skipped_steps"] | |
| logging.info("-----------------------------------") | |
| logging.info(f"TeaCache skipped:") | |
| logging.info(f"{skipped_steps_cond} cond steps") | |
| logging.info(f"out of {last_step} steps") | |
| logging.info("-----------------------------------") | |
| return out | |
| return unet_wrapper_function | |
| model_clone.set_model_unet_function_wrapper(outer_wrapper(start_percent=start_percent, end_percent=end_percent)) | |
| return (model_clone,) | |
| from comfy.ldm.flux.math import apply_rope | |
| def modified_wan_self_attention_forward(self, x, freqs): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
| freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
| """ | |
| b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
| # query, key, value function | |
| def qkv_fn(x): | |
| q = self.norm_q(self.q(x)).view(b, s, n, d) | |
| k = self.norm_k(self.k(x)).view(b, s, n, d) | |
| v = self.v(x).view(b, s, n * d) | |
| return q, k, v | |
| q, k, v = qkv_fn(x) | |
| q, k = apply_rope(q, k, freqs) | |
| feta_scores = get_feta_scores(q, k, self.num_frames, self.enhance_weight) | |
| x = comfy.ldm.modules.attention.optimized_attention( | |
| q.view(b, s, n * d), | |
| k.view(b, s, n * d), | |
| v, | |
| heads=self.num_heads, | |
| ) | |
| x = self.o(x) | |
| x *= feta_scores | |
| return x | |
| from einops import rearrange | |
| def get_feta_scores(query, key, num_frames, enhance_weight): | |
| img_q, img_k = query, key #torch.Size([2, 9216, 12, 128]) | |
| _, ST, num_heads, head_dim = img_q.shape | |
| spatial_dim = ST / num_frames | |
| spatial_dim = int(spatial_dim) | |
| query_image = rearrange( | |
| img_q, "B (T S) N C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim | |
| ) | |
| key_image = rearrange( | |
| img_k, "B (T S) N C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim | |
| ) | |
| return feta_score(query_image, key_image, head_dim, num_frames, enhance_weight) | |
| def feta_score(query_image, key_image, head_dim, num_frames, enhance_weight): | |
| scale = head_dim**-0.5 | |
| query_image = query_image * scale | |
| attn_temp = query_image @ key_image.transpose(-2, -1) # translate attn to float32 | |
| attn_temp = attn_temp.to(torch.float32) | |
| attn_temp = attn_temp.softmax(dim=-1) | |
| # Reshape to [batch_size * num_tokens, num_frames, num_frames] | |
| attn_temp = attn_temp.reshape(-1, num_frames, num_frames) | |
| # Create a mask for diagonal elements | |
| diag_mask = torch.eye(num_frames, device=attn_temp.device).bool() | |
| diag_mask = diag_mask.unsqueeze(0).expand(attn_temp.shape[0], -1, -1) | |
| # Zero out diagonal elements | |
| attn_wo_diag = attn_temp.masked_fill(diag_mask, 0) | |
| # Calculate mean for each token's attention matrix | |
| # Number of off-diagonal elements per matrix is n*n - n | |
| num_off_diag = num_frames * num_frames - num_frames | |
| mean_scores = attn_wo_diag.sum(dim=(1, 2)) / num_off_diag | |
| enhance_scores = mean_scores.mean() * (num_frames + enhance_weight) | |
| enhance_scores = enhance_scores.clamp(min=1) | |
| return enhance_scores | |
| import types | |
| class WanAttentionPatch: | |
| def __init__(self, num_frames, weight): | |
| self.num_frames = num_frames | |
| self.enhance_weight = weight | |
| def __get__(self, obj, objtype=None): | |
| # Create bound method with stored parameters | |
| def wrapped_attention(self_module, *args, **kwargs): | |
| self_module.num_frames = self.num_frames | |
| self_module.enhance_weight = self.enhance_weight | |
| return modified_wan_self_attention_forward(self_module, *args, **kwargs) | |
| return types.MethodType(wrapped_attention, obj) | |
| class WanVideoEnhanceAVideoKJ: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "latent": ("LATENT", {"tooltip": "Only used to get the latent count"}), | |
| "weight": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Strength of the enhance effect"}), | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| RETURN_NAMES = ("model",) | |
| FUNCTION = "enhance" | |
| CATEGORY = "KJNodes/experimental" | |
| DESCRIPTION = "https://github.com/NUS-HPC-AI-Lab/Enhance-A-Video" | |
| EXPERIMENTAL = True | |
| def enhance(self, model, weight, latent): | |
| if weight == 0: | |
| return (model,) | |
| num_frames = latent["samples"].shape[2] | |
| model_clone = model.clone() | |
| if 'transformer_options' not in model_clone.model_options: | |
| model_clone.model_options['transformer_options'] = {} | |
| model_clone.model_options["transformer_options"]["enhance_weight"] = weight | |
| diffusion_model = model_clone.get_model_object("diffusion_model") | |
| compile_settings = getattr(model.model, "compile_settings", None) | |
| for idx, block in enumerate(diffusion_model.blocks): | |
| patched_attn = WanAttentionPatch(num_frames, weight).__get__(block.self_attn, block.__class__) | |
| if compile_settings is not None: | |
| patched_attn = torch.compile(patched_attn, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"]) | |
| model_clone.add_object_patch(f"diffusion_model.blocks.{idx}.self_attn.forward", patched_attn) | |
| return (model_clone,) | |
| def normalized_attention_guidance(self, query, context_positive, context_negative): | |
| k_positive = self.norm_k(self.k(context_positive)) | |
| v_positive = self.v(context_positive) | |
| k_negative = self.norm_k(self.k(context_negative)) | |
| v_negative = self.v(context_negative) | |
| x_positive = comfy.ldm.modules.attention.optimized_attention(query, k_positive, v_positive, heads=self.num_heads).flatten(2) | |
| x_negative = comfy.ldm.modules.attention.optimized_attention(query, k_negative, v_negative, heads=self.num_heads).flatten(2) | |
| nag_guidance = x_positive * self.nag_scale - x_negative * (self.nag_scale - 1) | |
| norm_positive = torch.norm(x_positive, p=1, dim=-1, keepdim=True).expand_as(x_positive) | |
| norm_guidance = torch.norm(nag_guidance, p=1, dim=-1, keepdim=True).expand_as(nag_guidance) | |
| scale = torch.nan_to_num(norm_guidance / norm_positive, nan=10.0) | |
| mask = scale > self.nag_tau | |
| adjustment = (norm_positive * self.nag_tau) / (norm_guidance + 1e-7) | |
| nag_guidance = torch.where(mask, nag_guidance * adjustment, nag_guidance) | |
| x = nag_guidance * self.nag_alpha + x_positive * (1 - self.nag_alpha) | |
| del nag_guidance | |
| return x | |
| #region NAG | |
| def wan_crossattn_forward_nag(self, x, context, **kwargs): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| """ | |
| # Determine batch splitting and context handling | |
| if self.input_type == "default": | |
| # Single or [pos, neg] pair | |
| if context.shape[0] == 1: | |
| x_pos, context_pos = x, context | |
| x_neg, context_neg = None, None | |
| else: | |
| x_pos, x_neg = torch.chunk(x, 2, dim=0) | |
| context_pos, context_neg = torch.chunk(context, 2, dim=0) | |
| elif self.input_type == "batch": | |
| # Standard batch, no CFG | |
| x_pos, context_pos = x, context | |
| x_neg, context_neg = None, None | |
| # Positive branch | |
| q_pos = self.norm_q(self.q(x_pos)) | |
| nag_context = self.nag_context | |
| if self.input_type == "batch": | |
| nag_context = nag_context.repeat(x_pos.shape[0], 1, 1) | |
| x_pos_out = normalized_attention_guidance(self, q_pos, context_pos, nag_context) | |
| # Negative branch | |
| if x_neg is not None and context_neg is not None: | |
| q_neg = self.norm_q(self.q(x_neg)) | |
| k_neg = self.norm_k(self.k(context_neg)) | |
| v_neg = self.v(context_neg) | |
| x_neg_out = comfy.ldm.modules.attention.optimized_attention(q_neg, k_neg, v_neg, heads=self.num_heads) | |
| x = torch.cat([x_pos_out, x_neg_out], dim=0) | |
| else: | |
| x = x_pos_out | |
| return self.o(x) | |
| def wan_i2v_crossattn_forward_nag(self, x, context, context_img_len): | |
| r""" | |
| Args: | |
| x(Tensor): Shape [B, L1, C] | |
| context(Tensor): Shape [B, L2, C] | |
| """ | |
| context_img = context[:, :context_img_len] | |
| context = context[:, context_img_len:] | |
| q_img = self.norm_q(self.q(x)) | |
| k_img = self.norm_k_img(self.k_img(context_img)) | |
| v_img = self.v_img(context_img) | |
| img_x = comfy.ldm.modules.attention.optimized_attention(q_img, k_img, v_img, heads=self.num_heads) | |
| if context.shape[0] == 2: | |
| x, x_real_negative = torch.chunk(x, 2, dim=0) | |
| context_positive, context_negative = torch.chunk(context, 2, dim=0) | |
| else: | |
| context_positive = context | |
| context_negative = None | |
| q = self.norm_q(self.q(x)) | |
| x = normalized_attention_guidance(self, q, context_positive, self.nag_context) | |
| if context_negative is not None: | |
| q_real_negative = self.norm_q(self.q(x_real_negative)) | |
| k_real_negative = self.norm_k(self.k(context_negative)) | |
| v_real_negative = self.v(context_negative) | |
| x_real_negative = comfy.ldm.modules.attention.optimized_attention(q_real_negative, k_real_negative, v_real_negative, heads=self.num_heads) | |
| x = torch.cat([x, x_real_negative], dim=0) | |
| # output | |
| x = x + img_x | |
| x = self.o(x) | |
| return x | |
| class WanCrossAttentionPatch: | |
| def __init__(self, context, nag_scale, nag_alpha, nag_tau, i2v=False, input_type="default"): | |
| self.nag_context = context | |
| self.nag_scale = nag_scale | |
| self.nag_alpha = nag_alpha | |
| self.nag_tau = nag_tau | |
| self.i2v = i2v | |
| self.input_type = input_type | |
| def __get__(self, obj, objtype=None): | |
| # Create bound method with stored parameters | |
| def wrapped_attention(self_module, *args, **kwargs): | |
| self_module.nag_context = self.nag_context | |
| self_module.nag_scale = self.nag_scale | |
| self_module.nag_alpha = self.nag_alpha | |
| self_module.nag_tau = self.nag_tau | |
| self_module.input_type = self.input_type | |
| if self.i2v: | |
| return wan_i2v_crossattn_forward_nag(self_module, *args, **kwargs) | |
| else: | |
| return wan_crossattn_forward_nag(self_module, *args, **kwargs) | |
| return types.MethodType(wrapped_attention, obj) | |
| class WanVideoNAG: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "conditioning": ("CONDITIONING",), | |
| "nag_scale": ("FLOAT", {"default": 11.0, "min": 0.0, "max": 100.0, "step": 0.001, "tooltip": "Strength of negative guidance effect"}), | |
| "nag_alpha": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Mixing coefficient in that controls the balance between the normalized guided representation and the original positive representation."}), | |
| "nag_tau": ("FLOAT", {"default": 2.5, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Clipping threshold that controls how much the guided attention can deviate from the positive attention."}), | |
| }, | |
| "optional": { | |
| "input_type": (["default", "batch"], {"tooltip": "Type of the model input"}), | |
| }, | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| RETURN_NAMES = ("model",) | |
| FUNCTION = "patch" | |
| CATEGORY = "KJNodes/experimental" | |
| DESCRIPTION = "https://github.com/ChenDarYen/Normalized-Attention-Guidance" | |
| EXPERIMENTAL = True | |
| def patch(self, model, conditioning, nag_scale, nag_alpha, nag_tau, input_type="default"): | |
| if nag_scale == 0: | |
| return (model,) | |
| device = mm.get_torch_device() | |
| dtype = mm.unet_dtype() | |
| model_clone = model.clone() | |
| diffusion_model = model_clone.get_model_object("diffusion_model") | |
| diffusion_model.text_embedding.to(device) | |
| context = diffusion_model.text_embedding(conditioning[0][0].to(device, dtype)) | |
| type_str = str(type(model.model.model_config).__name__) | |
| i2v = True if "WAN21_I2V" in type_str else False | |
| for idx, block in enumerate(diffusion_model.blocks): | |
| patched_attn = WanCrossAttentionPatch(context, nag_scale, nag_alpha, nag_tau, i2v, input_type=input_type).__get__(block.cross_attn, block.__class__) | |
| model_clone.add_object_patch(f"diffusion_model.blocks.{idx}.cross_attn.forward", patched_attn) | |
| return (model_clone,) | |
| class SkipLayerGuidanceWanVideo: | |
| def INPUT_TYPES(s): | |
| return {"required": {"model": ("MODEL", ), | |
| "blocks": ("STRING", {"default": "10", "multiline": False}), | |
| "start_percent": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}), | |
| "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "slg" | |
| EXPERIMENTAL = True | |
| DESCRIPTION = "Simplified skip layer guidance that only skips the uncond on selected blocks" | |
| CATEGORY = "advanced/guidance" | |
| def slg(self, model, start_percent, end_percent, blocks): | |
| def skip(args, extra_args): | |
| transformer_options = extra_args.get("transformer_options", {}) | |
| original_block = extra_args["original_block"] | |
| if not transformer_options: | |
| raise ValueError("transformer_options not found in extra_args, currently SkipLayerGuidanceWanVideo only works with TeaCacheKJ") | |
| if start_percent <= transformer_options["current_percent"] <= end_percent: | |
| if args["img"].shape[0] == 2: | |
| prev_img_uncond = args["img"][0].unsqueeze(0) | |
| new_args = { | |
| "img": args["img"][1].unsqueeze(0), | |
| "txt": args["txt"][1].unsqueeze(0), | |
| "vec": args["vec"][1].unsqueeze(0), | |
| "pe": args["pe"][1].unsqueeze(0) | |
| } | |
| block_out = original_block(new_args) | |
| out = { | |
| "img": torch.cat([prev_img_uncond, block_out["img"]], dim=0), | |
| "txt": args["txt"], | |
| "vec": args["vec"], | |
| "pe": args["pe"] | |
| } | |
| else: | |
| if transformer_options.get("cond_or_uncond") == [0]: | |
| out = original_block(args) | |
| else: | |
| out = args | |
| else: | |
| out = original_block(args) | |
| return out | |
| block_list = [int(x.strip()) for x in blocks.split(",")] | |
| blocks = [int(i) for i in block_list] | |
| logging.info(f"Selected blocks to skip uncond on: {blocks}") | |
| m = model.clone() | |
| for b in blocks: | |
| #m.set_model_patch_replace(skip, "dit", "double_block", b) | |
| model_options = m.model_options["transformer_options"].copy() | |
| if "patches_replace" not in model_options: | |
| model_options["patches_replace"] = {} | |
| else: | |
| model_options["patches_replace"] = model_options["patches_replace"].copy() | |
| if "dit" not in model_options["patches_replace"]: | |
| model_options["patches_replace"]["dit"] = {} | |
| else: | |
| model_options["patches_replace"]["dit"] = model_options["patches_replace"]["dit"].copy() | |
| block = ("double_block", b) | |
| model_options["patches_replace"]["dit"][block] = skip | |
| m.model_options["transformer_options"] = model_options | |
| return (m, ) | |
| class CFGZeroStarAndInit: | |
| def INPUT_TYPES(s): | |
| return {"required": { | |
| "model": ("MODEL",), | |
| "use_zero_init": ("BOOLEAN", {"default": True}), | |
| "zero_init_steps": ("INT", {"default": 0, "min": 0, "tooltip": "for zero init, starts from 0 so first step is always zeroed out if use_zero_init enabled"}), | |
| }} | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| DESCRIPTION = "https://github.com/WeichenFan/CFG-Zero-star" | |
| CATEGORY = "KJNodes/experimental" | |
| EXPERIMENTAL = True | |
| def patch(self, model, use_zero_init, zero_init_steps): | |
| def cfg_zerostar(args): | |
| #zero init | |
| cond = args["cond"] | |
| timestep = args["timestep"] | |
| sigmas = args["model_options"]["transformer_options"]["sample_sigmas"] | |
| matched_step_index = (sigmas == timestep[0]).nonzero() | |
| if len(matched_step_index) > 0: | |
| current_step_index = matched_step_index.item() | |
| else: | |
| for i in range(len(sigmas) - 1): | |
| if (sigmas[i] - timestep[0]) * (sigmas[i + 1] - timestep[0]) <= 0: | |
| current_step_index = i | |
| break | |
| else: | |
| current_step_index = 0 | |
| if (current_step_index <= zero_init_steps) and use_zero_init: | |
| return cond * 0 | |
| uncond = args["uncond"] | |
| cond_scale = args["cond_scale"] | |
| batch_size = cond.shape[0] | |
| positive_flat = cond.view(batch_size, -1) | |
| negative_flat = uncond.view(batch_size, -1) | |
| dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) | |
| squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 | |
| alpha = dot_product / squared_norm | |
| alpha = alpha.view(batch_size, *([1] * (len(cond.shape) - 1))) | |
| noise_pred = uncond * alpha + cond_scale * (cond - uncond * alpha) | |
| return noise_pred | |
| m = model.clone() | |
| m.set_model_sampler_cfg_function(cfg_zerostar) | |
| return (m, ) |