multimodalart's picture
Upload 83 files
708238a verified
raw
history blame
88.9 kB
from comfy.ldm.modules import attention as comfy_attention
import logging
import comfy.model_patcher
import comfy.utils
import comfy.sd
import torch
import folder_paths
import comfy.model_management as mm
from comfy.cli_args import args
from typing import Optional, Tuple
sageattn_modes = ["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda", "sageattn_qk_int8_pv_fp8_cuda++"]
_initialized = False
_original_functions = {}
if not _initialized:
_original_functions["orig_attention"] = comfy_attention.optimized_attention
_original_functions["original_patch_model"] = comfy.model_patcher.ModelPatcher.patch_model
_original_functions["original_load_lora_for_models"] = comfy.sd.load_lora_for_models
try:
_original_functions["original_qwen_forward"] = comfy.ldm.qwen_image.model.Attention.forward
except:
pass
_initialized = True
class BaseLoaderKJ:
original_linear = None
cublas_patched = False
@torch.compiler.disable()
def _patch_modules(self, patch_cublaslinear, sage_attention):
try:
from comfy.ldm.qwen_image.model import apply_rotary_emb
def qwen_sage_forward(
self,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = attention_sage(joint_query, joint_key, joint_value, self.heads, attention_mask)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
img_attn_output = self.to_out[0](img_attn_output)
img_attn_output = self.to_out[1](img_attn_output)
txt_attn_output = self.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output
except:
print("Failed to patch QwenImage attention, Comfy not updated, skipping")
from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight
if sage_attention != "disabled":
print("Patching comfy attention to use sageattn")
from sageattention import sageattn
def set_sage_func(sage_attention):
if sage_attention == "auto":
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp16_cuda":
from sageattention import sageattn_qk_int8_pv_fp16_cuda
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp16_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32", tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp16_triton":
from sageattention import sageattn_qk_int8_pv_fp16_triton
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp16_triton(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda":
from sageattention import sageattn_qk_int8_pv_fp8_cuda
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32", tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda++":
from sageattention import sageattn_qk_int8_pv_fp8_cuda
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp16", tensor_layout=tensor_layout)
return func
sage_func = set_sage_func(sage_attention)
@torch.compiler.disable()
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout="HND"
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head),
(q, k, v),
)
tensor_layout="NHD"
if mask is not None:
# add a batch dimension if there isn't already one
if mask.ndim == 2:
mask = mask.unsqueeze(0)
# add a heads dimension if there isn't already one
if mask.ndim == 3:
mask = mask.unsqueeze(1)
out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
if tensor_layout == "HND":
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else:
if skip_output_reshape:
out = out.transpose(1, 2)
else:
out = out.reshape(b, -1, heads * dim_head)
return out
comfy_attention.optimized_attention = attention_sage
comfy.ldm.hunyuan_video.model.optimized_attention = attention_sage
comfy.ldm.flux.math.optimized_attention = attention_sage
comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = attention_sage
comfy.ldm.cosmos.blocks.optimized_attention = attention_sage
comfy.ldm.wan.model.optimized_attention = attention_sage
try:
comfy.ldm.qwen_image.model.Attention.forward = qwen_sage_forward
except:
pass
else:
print("Restoring initial comfy attention")
comfy_attention.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.hunyuan_video.model.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.flux.math.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.cosmos.blocks.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.wan.model.optimized_attention = _original_functions.get("orig_attention")
try:
comfy.ldm.qwen_image.model.Attention.forward = _original_functions.get("original_qwen_forward")
except:
pass
if patch_cublaslinear:
if not BaseLoaderKJ.cublas_patched:
BaseLoaderKJ.original_linear = disable_weight_init.Linear
try:
from cublas_ops import CublasLinear
except ImportError:
raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm")
class PatchedLinear(CublasLinear, CastWeightBiasOp):
def reset_parameters(self):
pass
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
disable_weight_init.Linear = PatchedLinear
BaseLoaderKJ.cublas_patched = True
else:
if BaseLoaderKJ.cublas_patched:
disable_weight_init.Linear = BaseLoaderKJ.original_linear
BaseLoaderKJ.cublas_patched = False
from comfy.patcher_extension import CallbacksMP
class PathchSageAttentionKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"sage_attention": (sageattn_modes, {"default": False, "tooltip": "Global patch comfy attention to use sageattn, once patched to revert back to normal you would need to run this node again with disabled option."}),
}}
RETURN_TYPES = ("MODEL", )
FUNCTION = "patch"
DESCRIPTION = "Experimental node for patching attention mode. This doesn't use the model patching system and thus can't be disabled without running the node again with 'disabled' option."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, model, sage_attention):
model_clone = model.clone()
@torch.compiler.disable()
def patch_attention_enable(model):
self._patch_modules(False, sage_attention)
@torch.compiler.disable()
def patch_attention_disable(model):
self._patch_modules(False, "disabled")
model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_attention_enable)
model_clone.add_callback(CallbacksMP.ON_CLEANUP, patch_attention_disable)
return model_clone,
class CheckpointLoaderKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp16", "bf16", "fp32"],),
"compute_dtype": (["default", "fp16", "bf16", "fp32"], {"default": "default", "tooltip": "The compute dtype to use for the model."}),
"patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
"sage_attention": (sageattn_modes, {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
"enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "patch"
DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, ckpt_name, weight_dtype, compute_dtype, patch_cublaslinear, sage_attention, enable_fp16_accumulation):
DTYPE_MAP = {
"fp8_e4m3fn": torch.float8_e4m3fn,
"fp8_e5m2": torch.float8_e5m2,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32
}
model_options = {}
if dtype := DTYPE_MAP.get(weight_dtype):
model_options["dtype"] = dtype
print(f"Setting {ckpt_name} weight dtype to {dtype}")
if weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
model_options["fp8_optimizations"] = True
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
model, clip, vae = self.load_state_dict_guess_config(
sd,
output_vae=True,
output_clip=True,
embedding_directory=folder_paths.get_folder_paths("embeddings"),
metadata=metadata,
model_options=model_options)
if dtype := DTYPE_MAP.get(compute_dtype):
model.set_model_compute_dtype(dtype)
model.force_cast_weights = False
print(f"Setting {ckpt_name} compute dtype to {dtype}")
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = True
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
else:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = False
def patch_attention(model):
self._patch_modules(patch_cublaslinear, sage_attention)
model.add_callback(CallbacksMP.ON_PRE_RUN,patch_attention)
return model, clip, vae
def load_state_dict_guess_config(self, sd, output_vae=True, output_clip=True, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
from comfy.sd import load_diffusion_model_state_dict, model_detection, VAE, CLIP
clip = None
vae = None
model = None
model_patcher = None
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = mm.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
if diffusion_model is None:
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
weight_dtype = None
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = mm.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
manual_cast_dtype = mm.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if output_model:
inital_load_device = mm.unet_inital_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model.load_model_weights(sd, diffusion_model_prefix)
if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = comfy.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
logging.debug("left over keys: {}".format(left_over))
if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=mm.unet_offload_device())
if inital_load_device != torch.device("cpu"):
logging.info("loaded diffusion model directly to GPU")
mm.load_models_gpu([model_patcher], force_full_load=True)
return (model_patcher, clip, vae)
class DiffusionModelSelector():
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("model_path",)
FUNCTION = "get_path"
DESCRIPTION = "Returns the path to the model as a string."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def get_path(self, model_name):
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name)
return (model_path,)
class DiffusionModelLoaderKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp16", "bf16", "fp32"],),
"compute_dtype": (["default", "fp16", "bf16", "fp32"], {"default": "default", "tooltip": "The compute dtype to use for the model."}),
"patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
"sage_attention": (sageattn_modes, {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
"enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}),
},
"optional": {
"extra_state_dict": ("STRING", {"forceInput": True, "tooltip": "The full path to an additional state dict to load, this will be merged with the main state dict. Useful for example to add VACE module to a WanVideoModel. You can use DiffusionModelSelector to easily get the path."}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch_and_load"
DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch_and_load(self, model_name, weight_dtype, compute_dtype, patch_cublaslinear, sage_attention, enable_fp16_accumulation, extra_state_dict=None):
DTYPE_MAP = {
"fp8_e4m3fn": torch.float8_e4m3fn,
"fp8_e5m2": torch.float8_e5m2,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32
}
model_options = {}
if dtype := DTYPE_MAP.get(weight_dtype):
model_options["dtype"] = dtype
print(f"Setting {model_name} weight dtype to {dtype}")
if weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
model_options["fp8_optimizations"] = True
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = True
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
else:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = False
unet_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name)
sd = comfy.utils.load_torch_file(unet_path)
if extra_state_dict is not None:
extra_sd = comfy.utils.load_torch_file(extra_state_dict)
sd.update(extra_sd)
del extra_sd
model = comfy.sd.load_diffusion_model_state_dict(sd, model_options=model_options)
if dtype := DTYPE_MAP.get(compute_dtype):
model.set_model_compute_dtype(dtype)
model.force_cast_weights = False
print(f"Setting {model_name} compute dtype to {dtype}")
def patch_attention(model):
self._patch_modules(patch_cublaslinear, sage_attention)
model.add_callback(CallbacksMP.ON_PRE_RUN,patch_attention)
return (model,)
class ModelPatchTorchSettings:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
DESCRIPTION = "Adds callbacks to model to set torch settings before and after running the model."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, model, enable_fp16_accumulation):
model_clone = model.clone()
def patch_enable_fp16_accum(model):
print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = True")
torch.backends.cuda.matmul.allow_fp16_accumulation = True
def patch_disable_fp16_accum(model):
print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = False")
torch.backends.cuda.matmul.allow_fp16_accumulation = False
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_enable_fp16_accum)
model_clone.add_callback(CallbacksMP.ON_CLEANUP, patch_disable_fp16_accum)
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
else:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_disable_fp16_accum)
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
return (model_clone,)
def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
with self.use_ejected():
device_to = mm.get_torch_device()
full_load_override = getattr(self.model, "full_load_override", "auto")
if full_load_override in ["enabled", "disabled"]:
full_load = full_load_override == "enabled"
else:
full_load = lowvram_model_memory == 0
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
for k in self.object_patches:
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
self.inject_model()
return self.model
def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip):
patch_keys = list(model.object_patches_backup.keys())
for k in patch_keys:
#print("backing up object patch: ", k)
comfy.utils.set_attr(model.model, k, model.object_patches_backup[k])
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
lora = comfy.lora_convert.convert_lora(lora)
loaded = comfy.lora.load_lora(lora, key_map)
#print(temp_object_patches_backup)
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.add_patches(loaded, strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
print("NOT LOADED {}".format(x))
if patch_keys:
if hasattr(model.model, "compile_settings"):
compile_settings = getattr(model.model, "compile_settings")
print("compile_settings: ", compile_settings)
for k in patch_keys:
if "diffusion_model." in k:
# Remove the prefix to get the attribute path
key = k.replace('diffusion_model.', '')
attributes = key.split('.')
# Start with the diffusion_model object
block = model.get_model_object("diffusion_model")
# Navigate through the attributes to get to the block
for attr in attributes:
if attr.isdigit():
block = block[int(attr)]
else:
block = getattr(block, attr)
# Compile the block
compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
# Add the compiled block back as an object patch
model.add_object_patch(k, compiled_block)
return (new_modelpatcher, new_clip)
class PatchModelPatcherOrder:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}),
"full_load": (["enabled", "disabled", "auto"], {"default": "auto", "tooltip": "Disabling may help with memory issues when loading large models, when changing this you should probably force model reload to avoid issues!"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile"
EXPERIMENTAL = True
def patch(self, model, patch_order, full_load):
comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {}
setattr(model.model, "full_load_override", full_load)
if patch_order == "weight_patch_first":
comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model
comfy.sd.load_lora_for_models = patched_load_lora_for_models
else:
comfy.model_patcher.ModelPatcher.patch_model = _original_functions.get("original_patch_model")
comfy.sd.load_lora_for_models = _original_functions.get("original_load_lora_for_models")
return model,
class TorchCompileModelFluxAdvanced:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"double_blocks": ("STRING", {"default": "0-18", "multiline": True}),
"single_blocks": ("STRING", {"default": "0-37", "multiline": True}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
},
"optional": {
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
DEPRECATED = True
def parse_blocks(self, blocks_str):
blocks = []
for part in blocks_str.split(','):
part = part.strip()
if '-' in part:
start, end = map(int, part.split('-'))
blocks.extend(range(start, end + 1))
else:
blocks.append(int(part))
return blocks
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic, dynamo_cache_size_limit):
single_block_list = self.parse_blocks(single_blocks)
double_block_list = self.parse_blocks(double_blocks)
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.double_blocks):
if i in double_block_list:
#print("Compiling double_block", i)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
for i, block in enumerate(diffusion_model.single_blocks):
if i in single_block_list:
#print("Compiling single block", i)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
# rest of the layers that are not patched
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
class TorchCompileModelFluxAdvancedV2:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}),
"single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
},
"optional": {
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic, dynamo_cache_size_limit):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
compile_key_list = []
try:
if double_blocks:
for i, block in enumerate(diffusion_model.double_blocks):
compile_key_list.append(f"diffusion_model.double_blocks.{i}")
if single_blocks:
for i, block in enumerate(diffusion_model.single_blocks):
compile_key_list.append(f"diffusion_model.single_blocks.{i}")
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
# rest of the layers that are not patched
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
class TorchCompileModelHyVideo:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}),
"compile_double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}),
"compile_txt_in": ("BOOLEAN", {"default": False, "tooltip": "Compile txt_in layers"}),
"compile_vector_in": ("BOOLEAN", {"default": False, "tooltip": "Compile vector_in layers"}),
"compile_final_layer": ("BOOLEAN", {"default": False, "tooltip": "Compile final layer"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_single_blocks, compile_double_blocks, compile_txt_in, compile_vector_in, compile_final_layer):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
if compile_single_blocks:
for i, block in enumerate(diffusion_model.single_blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", compiled_block)
if compile_double_blocks:
for i, block in enumerate(diffusion_model.double_blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", compiled_block)
if compile_txt_in:
compiled_block = torch.compile(diffusion_model.txt_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.txt_in", compiled_block)
if compile_vector_in:
compiled_block = torch.compile(diffusion_model.vector_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.vector_in", compiled_block)
if compile_final_layer:
compiled_block = torch.compile(diffusion_model.final_layer, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.final_layer", compiled_block)
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelWanVideo:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": False, "tooltip": "Compile only transformer blocks"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
DEPRECATED = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
for i, block in enumerate(diffusion_model.blocks):
if hasattr(block, "_orig_mod"):
block = block._orig_mod
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.blocks.{i}", compiled_block)
else:
compiled_model = torch.compile(diffusion_model, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model", compiled_model)
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelWanVideoV2:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
compile_key_list = []
for i, block in enumerate(diffusion_model.blocks):
compile_key_list.append(f"diffusion_model.blocks.{i}")
else:
compile_key_list =["diffusion_model"]
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelQwenImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
compile_key_list = []
for i, block in enumerate(diffusion_model.transformer_blocks):
compile_key_list.append(f"diffusion_model.transformer_blocks.{i}")
else:
compile_key_list =["diffusion_model"]
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileVAE:
def __init__(self):
self._compiled_encoder = False
self._compiled_decoder = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}),
"compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}),
}}
RETURN_TYPES = ("VAE",)
FUNCTION = "compile"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder):
if compile_encoder:
if not self._compiled_encoder:
encoder_name = "encoder"
if hasattr(vae.first_stage_model, "taesd_encoder"):
encoder_name = "taesd_encoder"
try:
setattr(
vae.first_stage_model,
encoder_name,
torch.compile(
getattr(vae.first_stage_model, encoder_name),
mode=mode,
fullgraph=fullgraph,
backend=backend,
),
)
self._compiled_encoder = True
except:
raise RuntimeError("Failed to compile model")
if compile_decoder:
if not self._compiled_decoder:
decoder_name = "decoder"
if hasattr(vae.first_stage_model, "taesd_decoder"):
decoder_name = "taesd_decoder"
try:
setattr(
vae.first_stage_model,
decoder_name,
torch.compile(
getattr(vae.first_stage_model, decoder_name),
mode=mode,
fullgraph=fullgraph,
backend=backend,
),
)
self._compiled_decoder = True
except:
raise RuntimeError("Failed to compile model")
return (vae, )
class TorchCompileControlNet:
def __init__(self):
self._compiled= False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"controlnet": ("CONTROL_NET",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
}}
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "compile"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def compile(self, controlnet, backend, mode, fullgraph):
if not self._compiled:
try:
# for i, block in enumerate(controlnet.control_model.double_blocks):
# print("Compiling controlnet double_block", i)
# controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend)
controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend)
self._compiled = True
except:
self._compiled = False
raise RuntimeError("Failed to compile model")
return (controlnet, )
class TorchCompileLTXModel:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, dynamic):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.transformer_blocks):
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block)
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileCosmosModel:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "tooltip": "Set the dynamo cache size limit"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, dynamic, dynamo_cache_size_limit):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
for name, block in diffusion_model.blocks.items():
#print(f"Compiling block {name}")
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
m.add_object_patch(f"diffusion_model.blocks.{name}", compiled_block)
#diffusion_model.blocks[name] = compiled_block
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
#teacache
try:
from comfy.ldm.wan.model import sinusoidal_embedding_1d
except:
pass
from einops import repeat
from unittest.mock import patch
from contextlib import nullcontext
import numpy as np
def relative_l1_distance(last_tensor, current_tensor):
l1_distance = torch.abs(last_tensor - current_tensor).mean()
norm = torch.abs(last_tensor).mean()
relative_l1_distance = l1_distance / norm
return relative_l1_distance.to(torch.float32)
@torch.compiler.disable()
def tea_cache(self, x, e0, e, transformer_options):
#teacache for cond and uncond separately
rel_l1_thresh = transformer_options["rel_l1_thresh"]
is_cond = True if transformer_options["cond_or_uncond"] == [0] else False
should_calc = True
suffix = "cond" if is_cond else "uncond"
# Init cache dict if not exists
if not hasattr(self, 'teacache_state'):
self.teacache_state = {
'cond': {'accumulated_rel_l1_distance': 0, 'prev_input': None,
'teacache_skipped_steps': 0, 'previous_residual': None},
'uncond': {'accumulated_rel_l1_distance': 0, 'prev_input': None,
'teacache_skipped_steps': 0, 'previous_residual': None}
}
logging.info("\nTeaCache: Initialized")
cache = self.teacache_state[suffix]
if cache['prev_input'] is not None:
if transformer_options["coefficients"] == []:
temb_relative_l1 = relative_l1_distance(cache['prev_input'], e0)
curr_acc_dist = cache['accumulated_rel_l1_distance'] + temb_relative_l1
else:
rescale_func = np.poly1d(transformer_options["coefficients"])
curr_acc_dist = cache['accumulated_rel_l1_distance'] + rescale_func(((e-cache['prev_input']).abs().mean() / cache['prev_input'].abs().mean()).cpu().item())
try:
if curr_acc_dist < rel_l1_thresh:
should_calc = False
cache['accumulated_rel_l1_distance'] = curr_acc_dist
else:
should_calc = True
cache['accumulated_rel_l1_distance'] = 0
except:
should_calc = True
cache['accumulated_rel_l1_distance'] = 0
if transformer_options["coefficients"] == []:
cache['prev_input'] = e0.clone().detach()
else:
cache['prev_input'] = e.clone().detach()
if not should_calc:
x += cache['previous_residual'].to(x.device)
cache['teacache_skipped_steps'] += 1
#print(f"TeaCache: Skipping {suffix} step")
return should_calc, cache
def teacache_wanvideo_vace_forward_orig(self, x, t, context, vace_context, vace_strength, clip_fea=None, freqs=None, transformer_options={}, **kwargs):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
if not transformer_options:
raise RuntimeError("Can't access transformer_options, this requires ComfyUI nightly version from Mar 14, 2025 or later")
teacache_enabled = transformer_options.get("teacache_enabled", False)
if not teacache_enabled:
should_calc = True
else:
should_calc, cache = tea_cache(self, x, e0, e, transformer_options)
if should_calc:
original_x = x.clone().detach()
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap, "transformer_options": transformer_options})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=original_x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
if teacache_enabled:
cache['previous_residual'] = (x - original_x).to(transformer_options["teacache_device"])
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
def teacache_wanvideo_forward_orig(self, x, t, context, clip_fea=None, freqs=None, transformer_options={}, **kwargs):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
teacache_enabled = transformer_options.get("teacache_enabled", False)
if not teacache_enabled:
should_calc = True
else:
should_calc, cache = tea_cache(self, x, e0, e, transformer_options)
if should_calc:
original_x = x.clone().detach()
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap, "transformer_options": transformer_options})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
if teacache_enabled:
cache['previous_residual'] = (x - original_x).to(transformer_options["teacache_device"])
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class WanVideoTeaCacheKJ:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"rel_l1_thresh": ("FLOAT", {"default": 0.275, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Threshold for to determine when to apply the cache, compromise between speed and accuracy. When using coefficients a good value range is something between 0.2-0.4 for all but 1.3B model, which should be about 10 times smaller, same as when not using coefficients."}),
"start_percent": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The start percentage of the steps to use with TeaCache."}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The end percentage of the steps to use with TeaCache."}),
"cache_device": (["main_device", "offload_device"], {"default": "offload_device", "tooltip": "Device to cache to"}),
"coefficients": (["disabled", "1.3B", "14B", "i2v_480", "i2v_720"], {"default": "i2v_480", "tooltip": "Coefficients for rescaling the relative l1 distance, if disabled the threshold value should be about 10 times smaller than the value used with coefficients."}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "patch_teacache"
CATEGORY = "KJNodes/teacache"
DESCRIPTION = """
Patch WanVideo model to use TeaCache. Speeds up inference by caching the output and
applying it instead of doing the step. Best results are achieved by choosing the
appropriate coefficients for the model. Early steps should never be skipped, with too
aggressive values this can happen and the motion suffers. Starting later can help with that too.
When NOT using coefficients, the threshold value should be
about 10 times smaller than the value used with coefficients.
Official recommended values https://github.com/ali-vilab/TeaCache/tree/main/TeaCache4Wan2.1:
<pre style='font-family:monospace'>
+-------------------+--------+---------+--------+
| Model | Low | Medium | High |
+-------------------+--------+---------+--------+
| Wan2.1 t2v 1.3B | 0.05 | 0.07 | 0.08 |
| Wan2.1 t2v 14B | 0.14 | 0.15 | 0.20 |
| Wan2.1 i2v 480P | 0.13 | 0.19 | 0.26 |
| Wan2.1 i2v 720P | 0.18 | 0.20 | 0.30 |
+-------------------+--------+---------+--------+
</pre>
"""
EXPERIMENTAL = True
def patch_teacache(self, model, rel_l1_thresh, start_percent, end_percent, cache_device, coefficients):
if rel_l1_thresh == 0:
return (model,)
if coefficients == "disabled" and rel_l1_thresh > 0.1:
logging.warning("Threshold value is too high for TeaCache without coefficients, consider using coefficients for better results.")
if coefficients != "disabled" and rel_l1_thresh < 0.1 and "1.3B" not in coefficients:
logging.warning("Threshold value is too low for TeaCache with coefficients, consider using higher threshold value for better results.")
# type_str = str(type(model.model.model_config).__name__)
#if model.model.diffusion_model.dim == 1536:
# model_type ="1.3B"
# else:
# if "WAN21_T2V" in type_str:
# model_type = "14B"
# elif "WAN21_I2V" in type_str:
# model_type = "i2v_480"
# else:
# model_type = "i2v_720" #how to detect this?
teacache_coefficients_map = {
"disabled": [],
"1.3B": [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01],
"14B": [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404],
"i2v_480": [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01],
"i2v_720": [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
}
coefficients = teacache_coefficients_map[coefficients]
teacache_device = mm.get_torch_device() if cache_device == "main_device" else mm.unet_offload_device()
model_clone = model.clone()
if 'transformer_options' not in model_clone.model_options:
model_clone.model_options['transformer_options'] = {}
model_clone.model_options["transformer_options"]["rel_l1_thresh"] = rel_l1_thresh
model_clone.model_options["transformer_options"]["teacache_device"] = teacache_device
model_clone.model_options["transformer_options"]["coefficients"] = coefficients
diffusion_model = model_clone.get_model_object("diffusion_model")
def outer_wrapper(start_percent, end_percent):
def unet_wrapper_function(model_function, kwargs):
input = kwargs["input"]
timestep = kwargs["timestep"]
c = kwargs["c"]
sigmas = c["transformer_options"]["sample_sigmas"]
cond_or_uncond = kwargs["cond_or_uncond"]
last_step = (len(sigmas) - 1)
matched_step_index = (sigmas == timestep[0] ).nonzero()
if len(matched_step_index) > 0:
current_step_index = matched_step_index.item()
else:
for i in range(len(sigmas) - 1):
# walk from beginning of steps until crossing the timestep
if (sigmas[i] - timestep[0]) * (sigmas[i + 1] - timestep[0]) <= 0:
current_step_index = i
break
else:
current_step_index = 0
if current_step_index == 0:
if (len(cond_or_uncond) == 1 and cond_or_uncond[0] == 1) or len(cond_or_uncond) == 2:
if hasattr(diffusion_model, "teacache_state"):
delattr(diffusion_model, "teacache_state")
logging.info("\nResetting TeaCache state")
current_percent = current_step_index / (len(sigmas) - 1)
c["transformer_options"]["current_percent"] = current_percent
if start_percent <= current_percent <= end_percent:
c["transformer_options"]["teacache_enabled"] = True
forward_function = teacache_wanvideo_vace_forward_orig if hasattr(diffusion_model, "vace_layers") else teacache_wanvideo_forward_orig
context = patch.multiple(
diffusion_model,
forward_orig=forward_function.__get__(diffusion_model, diffusion_model.__class__)
)
with context:
out = model_function(input, timestep, **c)
if current_step_index+1 == last_step and hasattr(diffusion_model, "teacache_state"):
if len(cond_or_uncond) == 1 and cond_or_uncond[0] == 0:
skipped_steps_cond = diffusion_model.teacache_state["cond"]["teacache_skipped_steps"]
skipped_steps_uncond = diffusion_model.teacache_state["uncond"]["teacache_skipped_steps"]
logging.info("-----------------------------------")
logging.info(f"TeaCache skipped:")
logging.info(f"{skipped_steps_cond} cond steps")
logging.info(f"{skipped_steps_uncond} uncond step")
logging.info(f"out of {last_step} steps")
logging.info("-----------------------------------")
elif len(cond_or_uncond) == 2:
skipped_steps_cond = diffusion_model.teacache_state["uncond"]["teacache_skipped_steps"]
logging.info("-----------------------------------")
logging.info(f"TeaCache skipped:")
logging.info(f"{skipped_steps_cond} cond steps")
logging.info(f"out of {last_step} steps")
logging.info("-----------------------------------")
return out
return unet_wrapper_function
model_clone.set_model_unet_function_wrapper(outer_wrapper(start_percent=start_percent, end_percent=end_percent))
return (model_clone,)
from comfy.ldm.flux.math import apply_rope
def modified_wan_self_attention_forward(self, x, freqs):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n * d)
return q, k, v
q, k, v = qkv_fn(x)
q, k = apply_rope(q, k, freqs)
feta_scores = get_feta_scores(q, k, self.num_frames, self.enhance_weight)
x = comfy.ldm.modules.attention.optimized_attention(
q.view(b, s, n * d),
k.view(b, s, n * d),
v,
heads=self.num_heads,
)
x = self.o(x)
x *= feta_scores
return x
from einops import rearrange
def get_feta_scores(query, key, num_frames, enhance_weight):
img_q, img_k = query, key #torch.Size([2, 9216, 12, 128])
_, ST, num_heads, head_dim = img_q.shape
spatial_dim = ST / num_frames
spatial_dim = int(spatial_dim)
query_image = rearrange(
img_q, "B (T S) N C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim
)
key_image = rearrange(
img_k, "B (T S) N C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim
)
return feta_score(query_image, key_image, head_dim, num_frames, enhance_weight)
def feta_score(query_image, key_image, head_dim, num_frames, enhance_weight):
scale = head_dim**-0.5
query_image = query_image * scale
attn_temp = query_image @ key_image.transpose(-2, -1) # translate attn to float32
attn_temp = attn_temp.to(torch.float32)
attn_temp = attn_temp.softmax(dim=-1)
# Reshape to [batch_size * num_tokens, num_frames, num_frames]
attn_temp = attn_temp.reshape(-1, num_frames, num_frames)
# Create a mask for diagonal elements
diag_mask = torch.eye(num_frames, device=attn_temp.device).bool()
diag_mask = diag_mask.unsqueeze(0).expand(attn_temp.shape[0], -1, -1)
# Zero out diagonal elements
attn_wo_diag = attn_temp.masked_fill(diag_mask, 0)
# Calculate mean for each token's attention matrix
# Number of off-diagonal elements per matrix is n*n - n
num_off_diag = num_frames * num_frames - num_frames
mean_scores = attn_wo_diag.sum(dim=(1, 2)) / num_off_diag
enhance_scores = mean_scores.mean() * (num_frames + enhance_weight)
enhance_scores = enhance_scores.clamp(min=1)
return enhance_scores
import types
class WanAttentionPatch:
def __init__(self, num_frames, weight):
self.num_frames = num_frames
self.enhance_weight = weight
def __get__(self, obj, objtype=None):
# Create bound method with stored parameters
def wrapped_attention(self_module, *args, **kwargs):
self_module.num_frames = self.num_frames
self_module.enhance_weight = self.enhance_weight
return modified_wan_self_attention_forward(self_module, *args, **kwargs)
return types.MethodType(wrapped_attention, obj)
class WanVideoEnhanceAVideoKJ:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"latent": ("LATENT", {"tooltip": "Only used to get the latent count"}),
"weight": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Strength of the enhance effect"}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "enhance"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "https://github.com/NUS-HPC-AI-Lab/Enhance-A-Video"
EXPERIMENTAL = True
def enhance(self, model, weight, latent):
if weight == 0:
return (model,)
num_frames = latent["samples"].shape[2]
model_clone = model.clone()
if 'transformer_options' not in model_clone.model_options:
model_clone.model_options['transformer_options'] = {}
model_clone.model_options["transformer_options"]["enhance_weight"] = weight
diffusion_model = model_clone.get_model_object("diffusion_model")
compile_settings = getattr(model.model, "compile_settings", None)
for idx, block in enumerate(diffusion_model.blocks):
patched_attn = WanAttentionPatch(num_frames, weight).__get__(block.self_attn, block.__class__)
if compile_settings is not None:
patched_attn = torch.compile(patched_attn, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
model_clone.add_object_patch(f"diffusion_model.blocks.{idx}.self_attn.forward", patched_attn)
return (model_clone,)
def normalized_attention_guidance(self, query, context_positive, context_negative):
k_positive = self.norm_k(self.k(context_positive))
v_positive = self.v(context_positive)
k_negative = self.norm_k(self.k(context_negative))
v_negative = self.v(context_negative)
x_positive = comfy.ldm.modules.attention.optimized_attention(query, k_positive, v_positive, heads=self.num_heads).flatten(2)
x_negative = comfy.ldm.modules.attention.optimized_attention(query, k_negative, v_negative, heads=self.num_heads).flatten(2)
nag_guidance = x_positive * self.nag_scale - x_negative * (self.nag_scale - 1)
norm_positive = torch.norm(x_positive, p=1, dim=-1, keepdim=True).expand_as(x_positive)
norm_guidance = torch.norm(nag_guidance, p=1, dim=-1, keepdim=True).expand_as(nag_guidance)
scale = torch.nan_to_num(norm_guidance / norm_positive, nan=10.0)
mask = scale > self.nag_tau
adjustment = (norm_positive * self.nag_tau) / (norm_guidance + 1e-7)
nag_guidance = torch.where(mask, nag_guidance * adjustment, nag_guidance)
x = nag_guidance * self.nag_alpha + x_positive * (1 - self.nag_alpha)
del nag_guidance
return x
#region NAG
def wan_crossattn_forward_nag(self, x, context, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
# Determine batch splitting and context handling
if self.input_type == "default":
# Single or [pos, neg] pair
if context.shape[0] == 1:
x_pos, context_pos = x, context
x_neg, context_neg = None, None
else:
x_pos, x_neg = torch.chunk(x, 2, dim=0)
context_pos, context_neg = torch.chunk(context, 2, dim=0)
elif self.input_type == "batch":
# Standard batch, no CFG
x_pos, context_pos = x, context
x_neg, context_neg = None, None
# Positive branch
q_pos = self.norm_q(self.q(x_pos))
nag_context = self.nag_context
if self.input_type == "batch":
nag_context = nag_context.repeat(x_pos.shape[0], 1, 1)
x_pos_out = normalized_attention_guidance(self, q_pos, context_pos, nag_context)
# Negative branch
if x_neg is not None and context_neg is not None:
q_neg = self.norm_q(self.q(x_neg))
k_neg = self.norm_k(self.k(context_neg))
v_neg = self.v(context_neg)
x_neg_out = comfy.ldm.modules.attention.optimized_attention(q_neg, k_neg, v_neg, heads=self.num_heads)
x = torch.cat([x_pos_out, x_neg_out], dim=0)
else:
x = x_pos_out
return self.o(x)
def wan_i2v_crossattn_forward_nag(self, x, context, context_img_len):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
context_img = context[:, :context_img_len]
context = context[:, context_img_len:]
q_img = self.norm_q(self.q(x))
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = comfy.ldm.modules.attention.optimized_attention(q_img, k_img, v_img, heads=self.num_heads)
if context.shape[0] == 2:
x, x_real_negative = torch.chunk(x, 2, dim=0)
context_positive, context_negative = torch.chunk(context, 2, dim=0)
else:
context_positive = context
context_negative = None
q = self.norm_q(self.q(x))
x = normalized_attention_guidance(self, q, context_positive, self.nag_context)
if context_negative is not None:
q_real_negative = self.norm_q(self.q(x_real_negative))
k_real_negative = self.norm_k(self.k(context_negative))
v_real_negative = self.v(context_negative)
x_real_negative = comfy.ldm.modules.attention.optimized_attention(q_real_negative, k_real_negative, v_real_negative, heads=self.num_heads)
x = torch.cat([x, x_real_negative], dim=0)
# output
x = x + img_x
x = self.o(x)
return x
class WanCrossAttentionPatch:
def __init__(self, context, nag_scale, nag_alpha, nag_tau, i2v=False, input_type="default"):
self.nag_context = context
self.nag_scale = nag_scale
self.nag_alpha = nag_alpha
self.nag_tau = nag_tau
self.i2v = i2v
self.input_type = input_type
def __get__(self, obj, objtype=None):
# Create bound method with stored parameters
def wrapped_attention(self_module, *args, **kwargs):
self_module.nag_context = self.nag_context
self_module.nag_scale = self.nag_scale
self_module.nag_alpha = self.nag_alpha
self_module.nag_tau = self.nag_tau
self_module.input_type = self.input_type
if self.i2v:
return wan_i2v_crossattn_forward_nag(self_module, *args, **kwargs)
else:
return wan_crossattn_forward_nag(self_module, *args, **kwargs)
return types.MethodType(wrapped_attention, obj)
class WanVideoNAG:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"conditioning": ("CONDITIONING",),
"nag_scale": ("FLOAT", {"default": 11.0, "min": 0.0, "max": 100.0, "step": 0.001, "tooltip": "Strength of negative guidance effect"}),
"nag_alpha": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Mixing coefficient in that controls the balance between the normalized guided representation and the original positive representation."}),
"nag_tau": ("FLOAT", {"default": 2.5, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Clipping threshold that controls how much the guided attention can deviate from the positive attention."}),
},
"optional": {
"input_type": (["default", "batch"], {"tooltip": "Type of the model input"}),
},
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "https://github.com/ChenDarYen/Normalized-Attention-Guidance"
EXPERIMENTAL = True
def patch(self, model, conditioning, nag_scale, nag_alpha, nag_tau, input_type="default"):
if nag_scale == 0:
return (model,)
device = mm.get_torch_device()
dtype = mm.unet_dtype()
model_clone = model.clone()
diffusion_model = model_clone.get_model_object("diffusion_model")
diffusion_model.text_embedding.to(device)
context = diffusion_model.text_embedding(conditioning[0][0].to(device, dtype))
type_str = str(type(model.model.model_config).__name__)
i2v = True if "WAN21_I2V" in type_str else False
for idx, block in enumerate(diffusion_model.blocks):
patched_attn = WanCrossAttentionPatch(context, nag_scale, nag_alpha, nag_tau, i2v, input_type=input_type).__get__(block.cross_attn, block.__class__)
model_clone.add_object_patch(f"diffusion_model.blocks.{idx}.cross_attn.forward", patched_attn)
return (model_clone,)
class SkipLayerGuidanceWanVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"blocks": ("STRING", {"default": "10", "multiline": False}),
"start_percent": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "slg"
EXPERIMENTAL = True
DESCRIPTION = "Simplified skip layer guidance that only skips the uncond on selected blocks"
CATEGORY = "advanced/guidance"
def slg(self, model, start_percent, end_percent, blocks):
def skip(args, extra_args):
transformer_options = extra_args.get("transformer_options", {})
original_block = extra_args["original_block"]
if not transformer_options:
raise ValueError("transformer_options not found in extra_args, currently SkipLayerGuidanceWanVideo only works with TeaCacheKJ")
if start_percent <= transformer_options["current_percent"] <= end_percent:
if args["img"].shape[0] == 2:
prev_img_uncond = args["img"][0].unsqueeze(0)
new_args = {
"img": args["img"][1].unsqueeze(0),
"txt": args["txt"][1].unsqueeze(0),
"vec": args["vec"][1].unsqueeze(0),
"pe": args["pe"][1].unsqueeze(0)
}
block_out = original_block(new_args)
out = {
"img": torch.cat([prev_img_uncond, block_out["img"]], dim=0),
"txt": args["txt"],
"vec": args["vec"],
"pe": args["pe"]
}
else:
if transformer_options.get("cond_or_uncond") == [0]:
out = original_block(args)
else:
out = args
else:
out = original_block(args)
return out
block_list = [int(x.strip()) for x in blocks.split(",")]
blocks = [int(i) for i in block_list]
logging.info(f"Selected blocks to skip uncond on: {blocks}")
m = model.clone()
for b in blocks:
#m.set_model_patch_replace(skip, "dit", "double_block", b)
model_options = m.model_options["transformer_options"].copy()
if "patches_replace" not in model_options:
model_options["patches_replace"] = {}
else:
model_options["patches_replace"] = model_options["patches_replace"].copy()
if "dit" not in model_options["patches_replace"]:
model_options["patches_replace"]["dit"] = {}
else:
model_options["patches_replace"]["dit"] = model_options["patches_replace"]["dit"].copy()
block = ("double_block", b)
model_options["patches_replace"]["dit"][block] = skip
m.model_options["transformer_options"] = model_options
return (m, )
class CFGZeroStarAndInit:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"use_zero_init": ("BOOLEAN", {"default": True}),
"zero_init_steps": ("INT", {"default": 0, "min": 0, "tooltip": "for zero init, starts from 0 so first step is always zeroed out if use_zero_init enabled"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
DESCRIPTION = "https://github.com/WeichenFan/CFG-Zero-star"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def patch(self, model, use_zero_init, zero_init_steps):
def cfg_zerostar(args):
#zero init
cond = args["cond"]
timestep = args["timestep"]
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"]
matched_step_index = (sigmas == timestep[0]).nonzero()
if len(matched_step_index) > 0:
current_step_index = matched_step_index.item()
else:
for i in range(len(sigmas) - 1):
if (sigmas[i] - timestep[0]) * (sigmas[i + 1] - timestep[0]) <= 0:
current_step_index = i
break
else:
current_step_index = 0
if (current_step_index <= zero_init_steps) and use_zero_init:
return cond * 0
uncond = args["uncond"]
cond_scale = args["cond_scale"]
batch_size = cond.shape[0]
positive_flat = cond.view(batch_size, -1)
negative_flat = uncond.view(batch_size, -1)
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
alpha = dot_product / squared_norm
alpha = alpha.view(batch_size, *([1] * (len(cond.shape) - 1)))
noise_pred = uncond * alpha + cond_scale * (cond - uncond * alpha)
return noise_pred
m = model.clone()
m.set_model_sampler_cfg_function(cfg_zerostar)
return (m, )