Spaces:
Running
on
Zero
Running
on
Zero
| import asyncio | |
| import io | |
| from inspect import cleandoc | |
| from typing import Union, Optional | |
| from comfy.comfy_types.node_typing import IO, ComfyNodeABC | |
| from comfy_api_nodes.apis.bfl_api import ( | |
| BFLStatus, | |
| BFLFluxExpandImageRequest, | |
| BFLFluxFillImageRequest, | |
| BFLFluxCannyImageRequest, | |
| BFLFluxDepthImageRequest, | |
| BFLFluxProGenerateRequest, | |
| BFLFluxKontextProGenerateRequest, | |
| BFLFluxProUltraGenerateRequest, | |
| BFLFluxProGenerateResponse, | |
| ) | |
| from comfy_api_nodes.apis.client import ( | |
| ApiEndpoint, | |
| HttpMethod, | |
| SynchronousOperation, | |
| ) | |
| from comfy_api_nodes.apinode_utils import ( | |
| downscale_image_tensor, | |
| validate_aspect_ratio, | |
| process_image_response, | |
| resize_mask_to_image, | |
| validate_string, | |
| ) | |
| import numpy as np | |
| from PIL import Image | |
| import aiohttp | |
| import torch | |
| import base64 | |
| import time | |
| from server import PromptServer | |
| def convert_mask_to_image(mask: torch.Tensor): | |
| """ | |
| Make mask have the expected amount of dims (4) and channels (3) to be recognized as an image. | |
| """ | |
| mask = mask.unsqueeze(-1) | |
| mask = torch.cat([mask]*3, dim=-1) | |
| return mask | |
| async def handle_bfl_synchronous_operation( | |
| operation: SynchronousOperation, | |
| timeout_bfl_calls=360, | |
| node_id: Union[str, None] = None, | |
| ): | |
| response_api: BFLFluxProGenerateResponse = await operation.execute() | |
| return await _poll_until_generated( | |
| response_api.polling_url, timeout=timeout_bfl_calls, node_id=node_id | |
| ) | |
| async def _poll_until_generated( | |
| polling_url: str, timeout=360, node_id: Union[str, None] = None | |
| ): | |
| # used bfl-comfy-nodes to verify code implementation: | |
| # https://github.com/black-forest-labs/bfl-comfy-nodes/tree/main | |
| start_time = time.time() | |
| retries_404 = 0 | |
| max_retries_404 = 5 | |
| retry_404_seconds = 2 | |
| retry_202_seconds = 2 | |
| retry_pending_seconds = 1 | |
| async with aiohttp.ClientSession() as session: | |
| # NOTE: should True loop be replaced with checking if workflow has been interrupted? | |
| while True: | |
| if node_id: | |
| time_elapsed = time.time() - start_time | |
| PromptServer.instance.send_progress_text( | |
| f"Generating ({time_elapsed:.0f}s)", node_id | |
| ) | |
| async with session.get(polling_url) as response: | |
| if response.status == 200: | |
| result = await response.json() | |
| if result["status"] == BFLStatus.ready: | |
| img_url = result["result"]["sample"] | |
| if node_id: | |
| PromptServer.instance.send_progress_text( | |
| f"Result URL: {img_url}", node_id | |
| ) | |
| async with session.get(img_url) as img_resp: | |
| return process_image_response(await img_resp.content.read()) | |
| elif result["status"] in [ | |
| BFLStatus.request_moderated, | |
| BFLStatus.content_moderated, | |
| ]: | |
| status = result["status"] | |
| raise Exception( | |
| f"BFL API did not return an image due to: {status}." | |
| ) | |
| elif result["status"] == BFLStatus.error: | |
| raise Exception(f"BFL API encountered an error: {result}.") | |
| elif result["status"] == BFLStatus.pending: | |
| await asyncio.sleep(retry_pending_seconds) | |
| continue | |
| elif response.status == 404: | |
| if retries_404 < max_retries_404: | |
| retries_404 += 1 | |
| await asyncio.sleep(retry_404_seconds) | |
| continue | |
| raise Exception( | |
| f"BFL API could not find task after {max_retries_404} tries." | |
| ) | |
| elif response.status == 202: | |
| await asyncio.sleep(retry_202_seconds) | |
| elif time.time() - start_time > timeout: | |
| raise Exception( | |
| f"BFL API experienced a timeout; could not return request under {timeout} seconds." | |
| ) | |
| else: | |
| raise Exception(f"BFL API encountered an error: {response.json()}") | |
| def convert_image_to_base64(image: torch.Tensor): | |
| scaled_image = downscale_image_tensor(image, total_pixels=2048 * 2048) | |
| # remove batch dimension if present | |
| if len(scaled_image.shape) > 3: | |
| scaled_image = scaled_image[0] | |
| image_np = (scaled_image.numpy() * 255).astype(np.uint8) | |
| img = Image.fromarray(image_np) | |
| img_byte_arr = io.BytesIO() | |
| img.save(img_byte_arr, format="PNG") | |
| return base64.b64encode(img_byte_arr.getvalue()).decode() | |
| class FluxProUltraImageNode(ComfyNodeABC): | |
| """ | |
| Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution. | |
| """ | |
| MINIMUM_RATIO = 1 / 4 | |
| MAXIMUM_RATIO = 4 / 1 | |
| MINIMUM_RATIO_STR = "1:4" | |
| MAXIMUM_RATIO_STR = "4:1" | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| "aspect_ratio": ( | |
| IO.STRING, | |
| { | |
| "default": "16:9", | |
| "tooltip": "Aspect ratio of image; must be between 1:4 and 4:1.", | |
| }, | |
| ), | |
| "raw": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "When True, generate less processed, more natural-looking images.", | |
| }, | |
| ), | |
| }, | |
| "optional": { | |
| "image_prompt": (IO.IMAGE,), | |
| "image_prompt_strength": ( | |
| IO.FLOAT, | |
| { | |
| "default": 0.1, | |
| "min": 0.0, | |
| "max": 1.0, | |
| "step": 0.01, | |
| "tooltip": "Blend between the prompt and the image prompt.", | |
| }, | |
| ), | |
| }, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| def VALIDATE_INPUTS(cls, aspect_ratio: str): | |
| try: | |
| validate_aspect_ratio( | |
| aspect_ratio, | |
| minimum_ratio=cls.MINIMUM_RATIO, | |
| maximum_ratio=cls.MAXIMUM_RATIO, | |
| minimum_ratio_str=cls.MINIMUM_RATIO_STR, | |
| maximum_ratio_str=cls.MAXIMUM_RATIO_STR, | |
| ) | |
| except Exception as e: | |
| return str(e) | |
| return True | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| async def api_call( | |
| self, | |
| prompt: str, | |
| aspect_ratio: str, | |
| prompt_upsampling=False, | |
| raw=False, | |
| seed=0, | |
| image_prompt=None, | |
| image_prompt_strength=0.1, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| if image_prompt is None: | |
| validate_string(prompt, strip_whitespace=False) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/bfl/flux-pro-1.1-ultra/generate", | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxProUltraGenerateRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxProUltraGenerateRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| seed=seed, | |
| aspect_ratio=validate_aspect_ratio( | |
| aspect_ratio, | |
| minimum_ratio=self.MINIMUM_RATIO, | |
| maximum_ratio=self.MAXIMUM_RATIO, | |
| minimum_ratio_str=self.MINIMUM_RATIO_STR, | |
| maximum_ratio_str=self.MAXIMUM_RATIO_STR, | |
| ), | |
| raw=raw, | |
| image_prompt=( | |
| image_prompt | |
| if image_prompt is None | |
| else convert_image_to_base64(image_prompt) | |
| ), | |
| image_prompt_strength=( | |
| None if image_prompt is None else round(image_prompt_strength, 2) | |
| ), | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| class FluxKontextProImageNode(ComfyNodeABC): | |
| """ | |
| Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio. | |
| """ | |
| MINIMUM_RATIO = 1 / 4 | |
| MAXIMUM_RATIO = 4 / 1 | |
| MINIMUM_RATIO_STR = "1:4" | |
| MAXIMUM_RATIO_STR = "4:1" | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation - specify what and how to edit.", | |
| }, | |
| ), | |
| "aspect_ratio": ( | |
| IO.STRING, | |
| { | |
| "default": "16:9", | |
| "tooltip": "Aspect ratio of image; must be between 1:4 and 4:1.", | |
| }, | |
| ), | |
| "guidance": ( | |
| IO.FLOAT, | |
| { | |
| "default": 3.0, | |
| "min": 0.1, | |
| "max": 99.0, | |
| "step": 0.1, | |
| "tooltip": "Guidance strength for the image generation process" | |
| }, | |
| ), | |
| "steps": ( | |
| IO.INT, | |
| { | |
| "default": 50, | |
| "min": 1, | |
| "max": 150, | |
| "tooltip": "Number of steps for the image generation process" | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 1234, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| }, | |
| "optional": { | |
| "input_image": (IO.IMAGE,), | |
| }, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| BFL_PATH = "/proxy/bfl/flux-kontext-pro/generate" | |
| async def api_call( | |
| self, | |
| prompt: str, | |
| aspect_ratio: str, | |
| guidance: float, | |
| steps: int, | |
| input_image: Optional[torch.Tensor]=None, | |
| seed=0, | |
| prompt_upsampling=False, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| aspect_ratio = validate_aspect_ratio( | |
| aspect_ratio, | |
| minimum_ratio=self.MINIMUM_RATIO, | |
| maximum_ratio=self.MAXIMUM_RATIO, | |
| minimum_ratio_str=self.MINIMUM_RATIO_STR, | |
| maximum_ratio_str=self.MAXIMUM_RATIO_STR, | |
| ) | |
| if input_image is None: | |
| validate_string(prompt, strip_whitespace=False) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path=self.BFL_PATH, | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxKontextProGenerateRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxKontextProGenerateRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| guidance=round(guidance, 1), | |
| steps=steps, | |
| seed=seed, | |
| aspect_ratio=aspect_ratio, | |
| input_image=( | |
| input_image | |
| if input_image is None | |
| else convert_image_to_base64(input_image) | |
| ) | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| class FluxKontextMaxImageNode(FluxKontextProImageNode): | |
| """ | |
| Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio. | |
| """ | |
| DESCRIPTION = cleandoc(__doc__ or "") | |
| BFL_PATH = "/proxy/bfl/flux-kontext-max/generate" | |
| class FluxProImageNode(ComfyNodeABC): | |
| """ | |
| Generates images synchronously based on prompt and resolution. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| "width": ( | |
| IO.INT, | |
| { | |
| "default": 1024, | |
| "min": 256, | |
| "max": 1440, | |
| "step": 32, | |
| }, | |
| ), | |
| "height": ( | |
| IO.INT, | |
| { | |
| "default": 768, | |
| "min": 256, | |
| "max": 1440, | |
| "step": 32, | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| }, | |
| "optional": { | |
| "image_prompt": (IO.IMAGE,), | |
| # "image_prompt_strength": ( | |
| # IO.FLOAT, | |
| # { | |
| # "default": 0.1, | |
| # "min": 0.0, | |
| # "max": 1.0, | |
| # "step": 0.01, | |
| # "tooltip": "Blend between the prompt and the image prompt.", | |
| # }, | |
| # ), | |
| }, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| async def api_call( | |
| self, | |
| prompt: str, | |
| prompt_upsampling, | |
| width: int, | |
| height: int, | |
| seed=0, | |
| image_prompt=None, | |
| # image_prompt_strength=0.1, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| image_prompt = ( | |
| image_prompt | |
| if image_prompt is None | |
| else convert_image_to_base64(image_prompt) | |
| ) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/bfl/flux-pro-1.1/generate", | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxProGenerateRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxProGenerateRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| width=width, | |
| height=height, | |
| seed=seed, | |
| image_prompt=image_prompt, | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| class FluxProExpandNode(ComfyNodeABC): | |
| """ | |
| Outpaints image based on prompt. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": (IO.IMAGE,), | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| "top": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 2048, | |
| "tooltip": "Number of pixels to expand at the top of the image" | |
| }, | |
| ), | |
| "bottom": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 2048, | |
| "tooltip": "Number of pixels to expand at the bottom of the image" | |
| }, | |
| ), | |
| "left": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 2048, | |
| "tooltip": "Number of pixels to expand at the left side of the image" | |
| }, | |
| ), | |
| "right": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 2048, | |
| "tooltip": "Number of pixels to expand at the right side of the image" | |
| }, | |
| ), | |
| "guidance": ( | |
| IO.FLOAT, | |
| { | |
| "default": 60, | |
| "min": 1.5, | |
| "max": 100, | |
| "tooltip": "Guidance strength for the image generation process" | |
| }, | |
| ), | |
| "steps": ( | |
| IO.INT, | |
| { | |
| "default": 50, | |
| "min": 15, | |
| "max": 50, | |
| "tooltip": "Number of steps for the image generation process" | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| }, | |
| "optional": {}, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| async def api_call( | |
| self, | |
| image: torch.Tensor, | |
| prompt: str, | |
| prompt_upsampling: bool, | |
| top: int, | |
| bottom: int, | |
| left: int, | |
| right: int, | |
| steps: int, | |
| guidance: float, | |
| seed=0, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| image = convert_image_to_base64(image) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/bfl/flux-pro-1.0-expand/generate", | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxExpandImageRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxExpandImageRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| top=top, | |
| bottom=bottom, | |
| left=left, | |
| right=right, | |
| steps=steps, | |
| guidance=guidance, | |
| seed=seed, | |
| image=image, | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| class FluxProFillNode(ComfyNodeABC): | |
| """ | |
| Inpaints image based on mask and prompt. | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": (IO.IMAGE,), | |
| "mask": (IO.MASK,), | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| "guidance": ( | |
| IO.FLOAT, | |
| { | |
| "default": 60, | |
| "min": 1.5, | |
| "max": 100, | |
| "tooltip": "Guidance strength for the image generation process" | |
| }, | |
| ), | |
| "steps": ( | |
| IO.INT, | |
| { | |
| "default": 50, | |
| "min": 15, | |
| "max": 50, | |
| "tooltip": "Number of steps for the image generation process" | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| }, | |
| "optional": {}, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| async def api_call( | |
| self, | |
| image: torch.Tensor, | |
| mask: torch.Tensor, | |
| prompt: str, | |
| prompt_upsampling: bool, | |
| steps: int, | |
| guidance: float, | |
| seed=0, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| # prepare mask | |
| mask = resize_mask_to_image(mask, image) | |
| mask = convert_image_to_base64(convert_mask_to_image(mask)) | |
| # make sure image will have alpha channel removed | |
| image = convert_image_to_base64(image[:, :, :, :3]) | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/bfl/flux-pro-1.0-fill/generate", | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxFillImageRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxFillImageRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| steps=steps, | |
| guidance=guidance, | |
| seed=seed, | |
| image=image, | |
| mask=mask, | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| class FluxProCannyNode(ComfyNodeABC): | |
| """ | |
| Generate image using a control image (canny). | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "control_image": (IO.IMAGE,), | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| "canny_low_threshold": ( | |
| IO.FLOAT, | |
| { | |
| "default": 0.1, | |
| "min": 0.01, | |
| "max": 0.99, | |
| "step": 0.01, | |
| "tooltip": "Low threshold for Canny edge detection; ignored if skip_processing is True" | |
| }, | |
| ), | |
| "canny_high_threshold": ( | |
| IO.FLOAT, | |
| { | |
| "default": 0.4, | |
| "min": 0.01, | |
| "max": 0.99, | |
| "step": 0.01, | |
| "tooltip": "High threshold for Canny edge detection; ignored if skip_processing is True" | |
| }, | |
| ), | |
| "skip_preprocessing": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to skip preprocessing; set to True if control_image already is canny-fied, False if it is a raw image.", | |
| }, | |
| ), | |
| "guidance": ( | |
| IO.FLOAT, | |
| { | |
| "default": 30, | |
| "min": 1, | |
| "max": 100, | |
| "tooltip": "Guidance strength for the image generation process" | |
| }, | |
| ), | |
| "steps": ( | |
| IO.INT, | |
| { | |
| "default": 50, | |
| "min": 15, | |
| "max": 50, | |
| "tooltip": "Number of steps for the image generation process" | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| }, | |
| "optional": {}, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| async def api_call( | |
| self, | |
| control_image: torch.Tensor, | |
| prompt: str, | |
| prompt_upsampling: bool, | |
| canny_low_threshold: float, | |
| canny_high_threshold: float, | |
| skip_preprocessing: bool, | |
| steps: int, | |
| guidance: float, | |
| seed=0, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| control_image = convert_image_to_base64(control_image[:, :, :, :3]) | |
| preprocessed_image = None | |
| # scale canny threshold between 0-500, to match BFL's API | |
| def scale_value(value: float, min_val=0, max_val=500): | |
| return min_val + value * (max_val - min_val) | |
| canny_low_threshold = int(round(scale_value(canny_low_threshold))) | |
| canny_high_threshold = int(round(scale_value(canny_high_threshold))) | |
| if skip_preprocessing: | |
| preprocessed_image = control_image | |
| control_image = None | |
| canny_low_threshold = None | |
| canny_high_threshold = None | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/bfl/flux-pro-1.0-canny/generate", | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxCannyImageRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxCannyImageRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| steps=steps, | |
| guidance=guidance, | |
| seed=seed, | |
| control_image=control_image, | |
| canny_low_threshold=canny_low_threshold, | |
| canny_high_threshold=canny_high_threshold, | |
| preprocessed_image=preprocessed_image, | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| class FluxProDepthNode(ComfyNodeABC): | |
| """ | |
| Generate image using a control image (depth). | |
| """ | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "control_image": (IO.IMAGE,), | |
| "prompt": ( | |
| IO.STRING, | |
| { | |
| "multiline": True, | |
| "default": "", | |
| "tooltip": "Prompt for the image generation", | |
| }, | |
| ), | |
| "prompt_upsampling": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", | |
| }, | |
| ), | |
| "skip_preprocessing": ( | |
| IO.BOOLEAN, | |
| { | |
| "default": False, | |
| "tooltip": "Whether to skip preprocessing; set to True if control_image already is depth-ified, False if it is a raw image.", | |
| }, | |
| ), | |
| "guidance": ( | |
| IO.FLOAT, | |
| { | |
| "default": 15, | |
| "min": 1, | |
| "max": 100, | |
| "tooltip": "Guidance strength for the image generation process" | |
| }, | |
| ), | |
| "steps": ( | |
| IO.INT, | |
| { | |
| "default": 50, | |
| "min": 15, | |
| "max": 50, | |
| "tooltip": "Number of steps for the image generation process" | |
| }, | |
| ), | |
| "seed": ( | |
| IO.INT, | |
| { | |
| "default": 0, | |
| "min": 0, | |
| "max": 0xFFFFFFFFFFFFFFFF, | |
| "control_after_generate": True, | |
| "tooltip": "The random seed used for creating the noise.", | |
| }, | |
| ), | |
| }, | |
| "optional": {}, | |
| "hidden": { | |
| "auth_token": "AUTH_TOKEN_COMFY_ORG", | |
| "comfy_api_key": "API_KEY_COMFY_ORG", | |
| "unique_id": "UNIQUE_ID", | |
| }, | |
| } | |
| RETURN_TYPES = (IO.IMAGE,) | |
| DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value | |
| FUNCTION = "api_call" | |
| API_NODE = True | |
| CATEGORY = "api node/image/BFL" | |
| async def api_call( | |
| self, | |
| control_image: torch.Tensor, | |
| prompt: str, | |
| prompt_upsampling: bool, | |
| skip_preprocessing: bool, | |
| steps: int, | |
| guidance: float, | |
| seed=0, | |
| unique_id: Union[str, None] = None, | |
| **kwargs, | |
| ): | |
| control_image = convert_image_to_base64(control_image[:,:,:,:3]) | |
| preprocessed_image = None | |
| if skip_preprocessing: | |
| preprocessed_image = control_image | |
| control_image = None | |
| operation = SynchronousOperation( | |
| endpoint=ApiEndpoint( | |
| path="/proxy/bfl/flux-pro-1.0-depth/generate", | |
| method=HttpMethod.POST, | |
| request_model=BFLFluxDepthImageRequest, | |
| response_model=BFLFluxProGenerateResponse, | |
| ), | |
| request=BFLFluxDepthImageRequest( | |
| prompt=prompt, | |
| prompt_upsampling=prompt_upsampling, | |
| steps=steps, | |
| guidance=guidance, | |
| seed=seed, | |
| control_image=control_image, | |
| preprocessed_image=preprocessed_image, | |
| ), | |
| auth_kwargs=kwargs, | |
| ) | |
| output_image = await handle_bfl_synchronous_operation(operation, node_id=unique_id) | |
| return (output_image,) | |
| # A dictionary that contains all nodes you want to export with their names | |
| # NOTE: names should be globally unique | |
| NODE_CLASS_MAPPINGS = { | |
| "FluxProUltraImageNode": FluxProUltraImageNode, | |
| # "FluxProImageNode": FluxProImageNode, | |
| "FluxKontextProImageNode": FluxKontextProImageNode, | |
| "FluxKontextMaxImageNode": FluxKontextMaxImageNode, | |
| "FluxProExpandNode": FluxProExpandNode, | |
| "FluxProFillNode": FluxProFillNode, | |
| "FluxProCannyNode": FluxProCannyNode, | |
| "FluxProDepthNode": FluxProDepthNode, | |
| } | |
| # A dictionary that contains the friendly/humanly readable titles for the nodes | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "FluxProUltraImageNode": "Flux 1.1 [pro] Ultra Image", | |
| # "FluxProImageNode": "Flux 1.1 [pro] Image", | |
| "FluxKontextProImageNode": "Flux.1 Kontext [pro] Image", | |
| "FluxKontextMaxImageNode": "Flux.1 Kontext [max] Image", | |
| "FluxProExpandNode": "Flux.1 Expand Image", | |
| "FluxProFillNode": "Flux.1 Fill Image", | |
| "FluxProCannyNode": "Flux.1 Canny Control Image", | |
| "FluxProDepthNode": "Flux.1 Depth Control Image", | |
| } | |