Spaces:
Running
on
Zero
Running
on
Zero
| import io | |
| import nodes | |
| import node_helpers | |
| import torch | |
| import comfy.model_management | |
| import comfy.model_sampling | |
| import comfy.utils | |
| import math | |
| import numpy as np | |
| import av | |
| from comfy.ldm.lightricks.symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords | |
| class EmptyLTXVLatentVideo: | |
| def INPUT_TYPES(s): | |
| return {"required": { "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "length": ("INT", {"default": 97, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "generate" | |
| CATEGORY = "latent/video/ltxv" | |
| def generate(self, width, height, length, batch_size=1): | |
| latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) | |
| return ({"samples": latent}, ) | |
| class LTXVImgToVideo: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "vae": ("VAE",), | |
| "image": ("IMAGE",), | |
| "width": ("INT", {"default": 768, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "height": ("INT", {"default": 512, "min": 64, "max": nodes.MAX_RESOLUTION, "step": 32}), | |
| "length": ("INT", {"default": 97, "min": 9, "max": nodes.MAX_RESOLUTION, "step": 8}), | |
| "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), | |
| "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| CATEGORY = "conditioning/video_models" | |
| FUNCTION = "generate" | |
| def generate(self, positive, negative, image, vae, width, height, length, batch_size, strength): | |
| pixels = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) | |
| encode_pixels = pixels[:, :, :, :3] | |
| t = vae.encode(encode_pixels) | |
| latent = torch.zeros([batch_size, 128, ((length - 1) // 8) + 1, height // 32, width // 32], device=comfy.model_management.intermediate_device()) | |
| latent[:, :, :t.shape[2]] = t | |
| conditioning_latent_frames_mask = torch.ones( | |
| (batch_size, 1, latent.shape[2], 1, 1), | |
| dtype=torch.float32, | |
| device=latent.device, | |
| ) | |
| conditioning_latent_frames_mask[:, :, :t.shape[2]] = 1.0 - strength | |
| return (positive, negative, {"samples": latent, "noise_mask": conditioning_latent_frames_mask}, ) | |
| def conditioning_get_any_value(conditioning, key, default=None): | |
| for t in conditioning: | |
| if key in t[1]: | |
| return t[1][key] | |
| return default | |
| def get_noise_mask(latent): | |
| noise_mask = latent.get("noise_mask", None) | |
| latent_image = latent["samples"] | |
| if noise_mask is None: | |
| batch_size, _, latent_length, _, _ = latent_image.shape | |
| noise_mask = torch.ones( | |
| (batch_size, 1, latent_length, 1, 1), | |
| dtype=torch.float32, | |
| device=latent_image.device, | |
| ) | |
| else: | |
| noise_mask = noise_mask.clone() | |
| return noise_mask | |
| def get_keyframe_idxs(cond): | |
| keyframe_idxs = conditioning_get_any_value(cond, "keyframe_idxs", None) | |
| if keyframe_idxs is None: | |
| return None, 0 | |
| num_keyframes = torch.unique(keyframe_idxs[:, 0]).shape[0] | |
| return keyframe_idxs, num_keyframes | |
| class LTXVAddGuide: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "vae": ("VAE",), | |
| "latent": ("LATENT",), | |
| "image": ("IMAGE", {"tooltip": "Image or video to condition the latent video on. Must be 8*n + 1 frames." | |
| "If the video is not 8*n + 1 frames, it will be cropped to the nearest 8*n + 1 frames."}), | |
| "frame_idx": ("INT", {"default": 0, "min": -9999, "max": 9999, | |
| "tooltip": "Frame index to start the conditioning at. For single-frame images or " | |
| "videos with 1-8 frames, any frame_idx value is acceptable. For videos with 9+ " | |
| "frames, frame_idx must be divisible by 8, otherwise it will be rounded down to " | |
| "the nearest multiple of 8. Negative values are counted from the end of the video."}), | |
| "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), | |
| } | |
| } | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| CATEGORY = "conditioning/video_models" | |
| FUNCTION = "generate" | |
| def __init__(self): | |
| self._num_prefix_frames = 2 | |
| self._patchifier = SymmetricPatchifier(1) | |
| def encode(self, vae, latent_width, latent_height, images, scale_factors): | |
| time_scale_factor, width_scale_factor, height_scale_factor = scale_factors | |
| images = images[:(images.shape[0] - 1) // time_scale_factor * time_scale_factor + 1] | |
| pixels = comfy.utils.common_upscale(images.movedim(-1, 1), latent_width * width_scale_factor, latent_height * height_scale_factor, "bilinear", crop="disabled").movedim(1, -1) | |
| encode_pixels = pixels[:, :, :, :3] | |
| t = vae.encode(encode_pixels) | |
| return encode_pixels, t | |
| def get_latent_index(self, cond, latent_length, guide_length, frame_idx, scale_factors): | |
| time_scale_factor, _, _ = scale_factors | |
| _, num_keyframes = get_keyframe_idxs(cond) | |
| latent_count = latent_length - num_keyframes | |
| frame_idx = frame_idx if frame_idx >= 0 else max((latent_count - 1) * time_scale_factor + 1 + frame_idx, 0) | |
| if guide_length > 1 and frame_idx != 0: | |
| frame_idx = (frame_idx - 1) // time_scale_factor * time_scale_factor + 1 # frame index - 1 must be divisible by 8 or frame_idx == 0 | |
| latent_idx = (frame_idx + time_scale_factor - 1) // time_scale_factor | |
| return frame_idx, latent_idx | |
| def add_keyframe_index(self, cond, frame_idx, guiding_latent, scale_factors): | |
| keyframe_idxs, _ = get_keyframe_idxs(cond) | |
| _, latent_coords = self._patchifier.patchify(guiding_latent) | |
| pixel_coords = latent_to_pixel_coords(latent_coords, scale_factors, causal_fix=frame_idx == 0) # we need the causal fix only if we're placing the new latents at index 0 | |
| pixel_coords[:, 0] += frame_idx | |
| if keyframe_idxs is None: | |
| keyframe_idxs = pixel_coords | |
| else: | |
| keyframe_idxs = torch.cat([keyframe_idxs, pixel_coords], dim=2) | |
| return node_helpers.conditioning_set_values(cond, {"keyframe_idxs": keyframe_idxs}) | |
| def append_keyframe(self, positive, negative, frame_idx, latent_image, noise_mask, guiding_latent, strength, scale_factors): | |
| _, latent_idx = self.get_latent_index( | |
| cond=positive, | |
| latent_length=latent_image.shape[2], | |
| guide_length=guiding_latent.shape[2], | |
| frame_idx=frame_idx, | |
| scale_factors=scale_factors, | |
| ) | |
| noise_mask[:, :, latent_idx:latent_idx + guiding_latent.shape[2]] = 1.0 | |
| positive = self.add_keyframe_index(positive, frame_idx, guiding_latent, scale_factors) | |
| negative = self.add_keyframe_index(negative, frame_idx, guiding_latent, scale_factors) | |
| mask = torch.full( | |
| (noise_mask.shape[0], 1, guiding_latent.shape[2], noise_mask.shape[3], noise_mask.shape[4]), | |
| 1.0 - strength, | |
| dtype=noise_mask.dtype, | |
| device=noise_mask.device, | |
| ) | |
| latent_image = torch.cat([latent_image, guiding_latent], dim=2) | |
| noise_mask = torch.cat([noise_mask, mask], dim=2) | |
| return positive, negative, latent_image, noise_mask | |
| def replace_latent_frames(self, latent_image, noise_mask, guiding_latent, latent_idx, strength): | |
| cond_length = guiding_latent.shape[2] | |
| assert latent_image.shape[2] >= latent_idx + cond_length, "Conditioning frames exceed the length of the latent sequence." | |
| mask = torch.full( | |
| (noise_mask.shape[0], 1, cond_length, 1, 1), | |
| 1.0 - strength, | |
| dtype=noise_mask.dtype, | |
| device=noise_mask.device, | |
| ) | |
| latent_image = latent_image.clone() | |
| noise_mask = noise_mask.clone() | |
| latent_image[:, :, latent_idx : latent_idx + cond_length] = guiding_latent | |
| noise_mask[:, :, latent_idx : latent_idx + cond_length] = mask | |
| return latent_image, noise_mask | |
| def generate(self, positive, negative, vae, latent, image, frame_idx, strength): | |
| scale_factors = vae.downscale_index_formula | |
| latent_image = latent["samples"] | |
| noise_mask = get_noise_mask(latent) | |
| _, _, latent_length, latent_height, latent_width = latent_image.shape | |
| image, t = self.encode(vae, latent_width, latent_height, image, scale_factors) | |
| frame_idx, latent_idx = self.get_latent_index(positive, latent_length, len(image), frame_idx, scale_factors) | |
| assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence." | |
| num_prefix_frames = min(self._num_prefix_frames, t.shape[2]) | |
| positive, negative, latent_image, noise_mask = self.append_keyframe( | |
| positive, | |
| negative, | |
| frame_idx, | |
| latent_image, | |
| noise_mask, | |
| t[:, :, :num_prefix_frames], | |
| strength, | |
| scale_factors, | |
| ) | |
| latent_idx += num_prefix_frames | |
| t = t[:, :, num_prefix_frames:] | |
| if t.shape[2] == 0: | |
| return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},) | |
| latent_image, noise_mask = self.replace_latent_frames( | |
| latent_image, | |
| noise_mask, | |
| t, | |
| latent_idx, | |
| strength, | |
| ) | |
| return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},) | |
| class LTXVCropGuides: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "latent": ("LATENT",), | |
| } | |
| } | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") | |
| RETURN_NAMES = ("positive", "negative", "latent") | |
| CATEGORY = "conditioning/video_models" | |
| FUNCTION = "crop" | |
| def __init__(self): | |
| self._patchifier = SymmetricPatchifier(1) | |
| def crop(self, positive, negative, latent): | |
| latent_image = latent["samples"].clone() | |
| noise_mask = get_noise_mask(latent) | |
| _, num_keyframes = get_keyframe_idxs(positive) | |
| if num_keyframes == 0: | |
| return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},) | |
| latent_image = latent_image[:, :, :-num_keyframes] | |
| noise_mask = noise_mask[:, :, :-num_keyframes] | |
| positive = node_helpers.conditioning_set_values(positive, {"keyframe_idxs": None}) | |
| negative = node_helpers.conditioning_set_values(negative, {"keyframe_idxs": None}) | |
| return (positive, negative, {"samples": latent_image, "noise_mask": noise_mask},) | |
| class LTXVConditioning: | |
| def INPUT_TYPES(s): | |
| return {"required": {"positive": ("CONDITIONING", ), | |
| "negative": ("CONDITIONING", ), | |
| "frame_rate": ("FLOAT", {"default": 25.0, "min": 0.0, "max": 1000.0, "step": 0.01}), | |
| }} | |
| RETURN_TYPES = ("CONDITIONING", "CONDITIONING") | |
| RETURN_NAMES = ("positive", "negative") | |
| FUNCTION = "append" | |
| CATEGORY = "conditioning/video_models" | |
| def append(self, positive, negative, frame_rate): | |
| positive = node_helpers.conditioning_set_values(positive, {"frame_rate": frame_rate}) | |
| negative = node_helpers.conditioning_set_values(negative, {"frame_rate": frame_rate}) | |
| return (positive, negative) | |
| class ModelSamplingLTXV: | |
| def INPUT_TYPES(s): | |
| return {"required": { "model": ("MODEL",), | |
| "max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), | |
| "base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), | |
| }, | |
| "optional": {"latent": ("LATENT",), } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "advanced/model" | |
| def patch(self, model, max_shift, base_shift, latent=None): | |
| m = model.clone() | |
| if latent is None: | |
| tokens = 4096 | |
| else: | |
| tokens = math.prod(latent["samples"].shape[2:]) | |
| x1 = 1024 | |
| x2 = 4096 | |
| mm = (max_shift - base_shift) / (x2 - x1) | |
| b = base_shift - mm * x1 | |
| shift = (tokens) * mm + b | |
| sampling_base = comfy.model_sampling.ModelSamplingFlux | |
| sampling_type = comfy.model_sampling.CONST | |
| class ModelSamplingAdvanced(sampling_base, sampling_type): | |
| pass | |
| model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
| model_sampling.set_parameters(shift=shift) | |
| m.add_object_patch("model_sampling", model_sampling) | |
| return (m, ) | |
| class LTXVScheduler: | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
| "max_shift": ("FLOAT", {"default": 2.05, "min": 0.0, "max": 100.0, "step":0.01}), | |
| "base_shift": ("FLOAT", {"default": 0.95, "min": 0.0, "max": 100.0, "step":0.01}), | |
| "stretch": ("BOOLEAN", { | |
| "default": True, | |
| "tooltip": "Stretch the sigmas to be in the range [terminal, 1]." | |
| }), | |
| "terminal": ( | |
| "FLOAT", | |
| { | |
| "default": 0.1, "min": 0.0, "max": 0.99, "step": 0.01, | |
| "tooltip": "The terminal value of the sigmas after stretching." | |
| }, | |
| ), | |
| }, | |
| "optional": {"latent": ("LATENT",), } | |
| } | |
| RETURN_TYPES = ("SIGMAS",) | |
| CATEGORY = "sampling/custom_sampling/schedulers" | |
| FUNCTION = "get_sigmas" | |
| def get_sigmas(self, steps, max_shift, base_shift, stretch, terminal, latent=None): | |
| if latent is None: | |
| tokens = 4096 | |
| else: | |
| tokens = math.prod(latent["samples"].shape[2:]) | |
| sigmas = torch.linspace(1.0, 0.0, steps + 1) | |
| x1 = 1024 | |
| x2 = 4096 | |
| mm = (max_shift - base_shift) / (x2 - x1) | |
| b = base_shift - mm * x1 | |
| sigma_shift = (tokens) * mm + b | |
| power = 1 | |
| sigmas = torch.where( | |
| sigmas != 0, | |
| math.exp(sigma_shift) / (math.exp(sigma_shift) + (1 / sigmas - 1) ** power), | |
| 0, | |
| ) | |
| # Stretch sigmas so that its final value matches the given terminal value. | |
| if stretch: | |
| non_zero_mask = sigmas != 0 | |
| non_zero_sigmas = sigmas[non_zero_mask] | |
| one_minus_z = 1.0 - non_zero_sigmas | |
| scale_factor = one_minus_z[-1] / (1.0 - terminal) | |
| stretched = 1.0 - (one_minus_z / scale_factor) | |
| sigmas[non_zero_mask] = stretched | |
| return (sigmas,) | |
| def encode_single_frame(output_file, image_array: np.ndarray, crf): | |
| container = av.open(output_file, "w", format="mp4") | |
| try: | |
| stream = container.add_stream( | |
| "libx264", rate=1, options={"crf": str(crf), "preset": "veryfast"} | |
| ) | |
| stream.height = image_array.shape[0] | |
| stream.width = image_array.shape[1] | |
| av_frame = av.VideoFrame.from_ndarray(image_array, format="rgb24").reformat( | |
| format="yuv420p" | |
| ) | |
| container.mux(stream.encode(av_frame)) | |
| container.mux(stream.encode()) | |
| finally: | |
| container.close() | |
| def decode_single_frame(video_file): | |
| container = av.open(video_file) | |
| try: | |
| stream = next(s for s in container.streams if s.type == "video") | |
| frame = next(container.decode(stream)) | |
| finally: | |
| container.close() | |
| return frame.to_ndarray(format="rgb24") | |
| def preprocess(image: torch.Tensor, crf=29): | |
| if crf == 0: | |
| return image | |
| image_array = (image[:(image.shape[0] // 2) * 2, :(image.shape[1] // 2) * 2] * 255.0).byte().cpu().numpy() | |
| with io.BytesIO() as output_file: | |
| encode_single_frame(output_file, image_array, crf) | |
| video_bytes = output_file.getvalue() | |
| with io.BytesIO(video_bytes) as video_file: | |
| image_array = decode_single_frame(video_file) | |
| tensor = torch.tensor(image_array, dtype=image.dtype, device=image.device) / 255.0 | |
| return tensor | |
| class LTXVPreprocess: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "img_compression": ( | |
| "INT", | |
| { | |
| "default": 35, | |
| "min": 0, | |
| "max": 100, | |
| "tooltip": "Amount of compression to apply on image.", | |
| }, | |
| ), | |
| } | |
| } | |
| FUNCTION = "preprocess" | |
| RETURN_TYPES = ("IMAGE",) | |
| RETURN_NAMES = ("output_image",) | |
| CATEGORY = "image" | |
| def preprocess(self, image, img_compression): | |
| output_images = [] | |
| for i in range(image.shape[0]): | |
| output_images.append(preprocess(image[i], img_compression)) | |
| return (torch.stack(output_images),) | |
| NODE_CLASS_MAPPINGS = { | |
| "EmptyLTXVLatentVideo": EmptyLTXVLatentVideo, | |
| "LTXVImgToVideo": LTXVImgToVideo, | |
| "ModelSamplingLTXV": ModelSamplingLTXV, | |
| "LTXVConditioning": LTXVConditioning, | |
| "LTXVScheduler": LTXVScheduler, | |
| "LTXVAddGuide": LTXVAddGuide, | |
| "LTXVPreprocess": LTXVPreprocess, | |
| "LTXVCropGuides": LTXVCropGuides, | |
| } | |