Spaces:
Running
on
Zero
Running
on
Zero
| from typing_extensions import override | |
| from comfy_api.latest import ComfyExtension, io | |
| def attention_multiply(attn, model, q, k, v, out): | |
| m = model.clone() | |
| sd = model.model_state_dict() | |
| for key in sd: | |
| if key.endswith("{}.to_q.bias".format(attn)) or key.endswith("{}.to_q.weight".format(attn)): | |
| m.add_patches({key: (None,)}, 0.0, q) | |
| if key.endswith("{}.to_k.bias".format(attn)) or key.endswith("{}.to_k.weight".format(attn)): | |
| m.add_patches({key: (None,)}, 0.0, k) | |
| if key.endswith("{}.to_v.bias".format(attn)) or key.endswith("{}.to_v.weight".format(attn)): | |
| m.add_patches({key: (None,)}, 0.0, v) | |
| if key.endswith("{}.to_out.0.bias".format(attn)) or key.endswith("{}.to_out.0.weight".format(attn)): | |
| m.add_patches({key: (None,)}, 0.0, out) | |
| return m | |
| class UNetSelfAttentionMultiply(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="UNetSelfAttentionMultiply", | |
| category="_for_testing/attention_experiments", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01), | |
| ], | |
| outputs=[io.Model.Output()], | |
| is_experimental=True, | |
| ) | |
| def execute(cls, model, q, k, v, out) -> io.NodeOutput: | |
| m = attention_multiply("attn1", model, q, k, v, out) | |
| return io.NodeOutput(m) | |
| class UNetCrossAttentionMultiply(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="UNetCrossAttentionMultiply", | |
| category="_for_testing/attention_experiments", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01), | |
| ], | |
| outputs=[io.Model.Output()], | |
| is_experimental=True, | |
| ) | |
| def execute(cls, model, q, k, v, out) -> io.NodeOutput: | |
| m = attention_multiply("attn2", model, q, k, v, out) | |
| return io.NodeOutput(m) | |
| class CLIPAttentionMultiply(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="CLIPAttentionMultiply", | |
| category="_for_testing/attention_experiments", | |
| inputs=[ | |
| io.Clip.Input("clip"), | |
| io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("k", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("v", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("out", default=1.0, min=0.0, max=10.0, step=0.01), | |
| ], | |
| outputs=[io.Clip.Output()], | |
| is_experimental=True, | |
| ) | |
| def execute(cls, clip, q, k, v, out) -> io.NodeOutput: | |
| m = clip.clone() | |
| sd = m.patcher.model_state_dict() | |
| for key in sd: | |
| if key.endswith("self_attn.q_proj.weight") or key.endswith("self_attn.q_proj.bias"): | |
| m.add_patches({key: (None,)}, 0.0, q) | |
| if key.endswith("self_attn.k_proj.weight") or key.endswith("self_attn.k_proj.bias"): | |
| m.add_patches({key: (None,)}, 0.0, k) | |
| if key.endswith("self_attn.v_proj.weight") or key.endswith("self_attn.v_proj.bias"): | |
| m.add_patches({key: (None,)}, 0.0, v) | |
| if key.endswith("self_attn.out_proj.weight") or key.endswith("self_attn.out_proj.bias"): | |
| m.add_patches({key: (None,)}, 0.0, out) | |
| return io.NodeOutput(m) | |
| class UNetTemporalAttentionMultiply(io.ComfyNode): | |
| def define_schema(cls) -> io.Schema: | |
| return io.Schema( | |
| node_id="UNetTemporalAttentionMultiply", | |
| category="_for_testing/attention_experiments", | |
| inputs=[ | |
| io.Model.Input("model"), | |
| io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("self_temporal", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("cross_structural", default=1.0, min=0.0, max=10.0, step=0.01), | |
| io.Float.Input("cross_temporal", default=1.0, min=0.0, max=10.0, step=0.01), | |
| ], | |
| outputs=[io.Model.Output()], | |
| is_experimental=True, | |
| ) | |
| def execute(cls, model, self_structural, self_temporal, cross_structural, cross_temporal) -> io.NodeOutput: | |
| m = model.clone() | |
| sd = model.model_state_dict() | |
| for k in sd: | |
| if (k.endswith("attn1.to_out.0.bias") or k.endswith("attn1.to_out.0.weight")): | |
| if '.time_stack.' in k: | |
| m.add_patches({k: (None,)}, 0.0, self_temporal) | |
| else: | |
| m.add_patches({k: (None,)}, 0.0, self_structural) | |
| elif (k.endswith("attn2.to_out.0.bias") or k.endswith("attn2.to_out.0.weight")): | |
| if '.time_stack.' in k: | |
| m.add_patches({k: (None,)}, 0.0, cross_temporal) | |
| else: | |
| m.add_patches({k: (None,)}, 0.0, cross_structural) | |
| return io.NodeOutput(m) | |
| class AttentionMultiplyExtension(ComfyExtension): | |
| async def get_node_list(self) -> list[type[io.ComfyNode]]: | |
| return [ | |
| UNetSelfAttentionMultiply, | |
| UNetCrossAttentionMultiply, | |
| CLIPAttentionMultiply, | |
| UNetTemporalAttentionMultiply, | |
| ] | |
| async def comfy_entrypoint() -> AttentionMultiplyExtension: | |
| return AttentionMultiplyExtension() | |