Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ import cv2
|
|
15 |
import tempfile
|
16 |
import os
|
17 |
|
|
|
18 |
config_file = hf_hub_download(
|
19 |
"xinsir/controlnet-union-sdxl-1.0",
|
20 |
filename="config_promax.json",
|
@@ -169,39 +170,35 @@ def infer(image, width=1024, height=1024, overlap_width=18, num_inference_steps=
|
|
169 |
|
170 |
yield background, cnet_image
|
171 |
|
172 |
-
def
|
173 |
-
"""
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
return "1:1"
|
200 |
-
else:
|
201 |
-
return "Custom"
|
202 |
|
203 |
-
|
204 |
-
return gr.update(visible=(resize_option == "Custom"))
|
205 |
|
206 |
def create_video_from_images(image_list, fps=4):
|
207 |
if not image_list:
|
@@ -222,28 +219,68 @@ def create_video_from_images(image_list, fps=4):
|
|
222 |
return video_path
|
223 |
|
224 |
@spaces.GPU(duration=70)
|
225 |
-
def loop_outpainting(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8,
|
|
|
|
|
|
|
226 |
image_list = [image]
|
227 |
current_image = image
|
228 |
|
229 |
for _ in progress.tqdm(range(num_iterations), desc="Generating frames"):
|
230 |
# Generate new image
|
231 |
-
for step_result in infer(current_image, width, height, overlap_width, num_inference_steps,
|
|
|
232 |
pass # Process all steps
|
233 |
|
234 |
new_image = step_result[1] # Get the final image from the last step
|
235 |
-
|
|
|
|
|
|
|
236 |
|
237 |
# Use new image as input for next iteration
|
238 |
current_image = new_image
|
239 |
|
240 |
-
reverse_image_list = image_list[::-1]
|
241 |
# Create video from image list
|
242 |
-
video_path = create_video_from_images(
|
243 |
return video_path
|
244 |
|
245 |
loop_outpainting.zerogpu = True
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
css = """
|
248 |
.gradio-container {
|
249 |
width: 1200px !important;
|
@@ -326,6 +363,8 @@ with gr.Blocks(css=css) as demo:
|
|
326 |
with gr.Row():
|
327 |
num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=18)
|
328 |
fps = gr.Slider(label="fps", minimum=1, maximum=24, value=8)
|
|
|
|
|
329 |
|
330 |
with gr.Column():
|
331 |
result = ImageSlider(
|
@@ -335,6 +374,7 @@ with gr.Blocks(css=css) as demo:
|
|
335 |
)
|
336 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
337 |
video_output = gr.Video(label="Outpainting Video")
|
|
|
338 |
gr.Examples(
|
339 |
examples=["hide.png", "disaster.png"],
|
340 |
fn=loop_outpainting,
|
@@ -342,6 +382,7 @@ with gr.Blocks(css=css) as demo:
|
|
342 |
outputs=video_output,
|
343 |
cache_examples="lazy"
|
344 |
)
|
|
|
345 |
def use_output_as_input(output_image):
|
346 |
"""Sets the generated output as the new input image."""
|
347 |
return gr.update(value=output_image[1])
|
@@ -413,7 +454,8 @@ with gr.Blocks(css=css) as demo:
|
|
413 |
loop_button.click(
|
414 |
fn=loop_outpainting,
|
415 |
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
|
416 |
-
resize_option, custom_resize_size, prompt_input, alignment_dropdown,
|
|
|
417 |
outputs=video_output,
|
418 |
)
|
419 |
|
|
|
15 |
import tempfile
|
16 |
import os
|
17 |
|
18 |
+
# Load models and configurations
|
19 |
config_file = hf_hub_download(
|
20 |
"xinsir/controlnet-union-sdxl-1.0",
|
21 |
filename="config_promax.json",
|
|
|
170 |
|
171 |
yield background, cnet_image
|
172 |
|
173 |
+
def interpolate_frames(frame1, frame2, num_intermediate_frames):
|
174 |
+
"""
|
175 |
+
Interpolate between two frames by gradually zooming out from frame2 to frame1.
|
176 |
+
"""
|
177 |
+
frame1 = np.array(frame1)
|
178 |
+
frame2 = np.array(frame2)
|
179 |
+
h, w = frame1.shape[:2]
|
180 |
+
frames = []
|
181 |
+
|
182 |
+
for i in range(num_intermediate_frames + 2):
|
183 |
+
progress = i / (num_intermediate_frames + 1)
|
184 |
+
# Calculate the size of the inner frame
|
185 |
+
inner_h = int(h * (1 - progress))
|
186 |
+
inner_w = int(w * (1 - progress))
|
187 |
+
|
188 |
+
# Crop the center of frame2
|
189 |
+
start_y = (h - inner_h) // 2
|
190 |
+
start_x = (w - inner_w) // 2
|
191 |
+
cropped = frame2[start_y:start_y+inner_h, start_x:start_x+inner_w]
|
192 |
+
|
193 |
+
# Resize the cropped image to full size
|
194 |
+
interpolated = Image.fromarray(cropped).resize((w, h), Image.LANCZOS)
|
195 |
+
interpolated = np.array(interpolated)
|
196 |
+
|
197 |
+
# Blend with frame1
|
198 |
+
blended = (1 - progress) * frame1 + progress * interpolated
|
199 |
+
frames.append(Image.fromarray(blended.astype(np.uint8)))
|
|
|
|
|
|
|
200 |
|
201 |
+
return frames
|
|
|
202 |
|
203 |
def create_video_from_images(image_list, fps=4):
|
204 |
if not image_list:
|
|
|
219 |
return video_path
|
220 |
|
221 |
@spaces.GPU(duration=70)
|
222 |
+
def loop_outpainting(image, width=1024, height=1024, overlap_width=18, num_inference_steps=8,
|
223 |
+
resize_option="custom", custom_resize_size=768, prompt_input=None,
|
224 |
+
alignment="Middle", num_iterations=18, fps=6, num_interpolation_frames=5,
|
225 |
+
progress=gr.Progress()):
|
226 |
image_list = [image]
|
227 |
current_image = image
|
228 |
|
229 |
for _ in progress.tqdm(range(num_iterations), desc="Generating frames"):
|
230 |
# Generate new image
|
231 |
+
for step_result in infer(current_image, width, height, overlap_width, num_inference_steps,
|
232 |
+
resize_option, custom_resize_size, prompt_input, alignment):
|
233 |
pass # Process all steps
|
234 |
|
235 |
new_image = step_result[1] # Get the final image from the last step
|
236 |
+
|
237 |
+
# Interpolate between current_image and new_image
|
238 |
+
interpolated_frames = interpolate_frames(current_image, new_image, num_interpolation_frames)
|
239 |
+
image_list.extend(interpolated_frames)
|
240 |
|
241 |
# Use new image as input for next iteration
|
242 |
current_image = new_image
|
243 |
|
|
|
244 |
# Create video from image list
|
245 |
+
video_path = create_video_from_images(image_list, fps)
|
246 |
return video_path
|
247 |
|
248 |
loop_outpainting.zerogpu = True
|
249 |
|
250 |
+
def clear_result():
|
251 |
+
"""Clears the result ImageSlider."""
|
252 |
+
return gr.update(value=None)
|
253 |
+
|
254 |
+
def preload_presets(target_ratio, ui_width, ui_height):
|
255 |
+
"""Updates the width and height sliders based on the selected aspect ratio."""
|
256 |
+
if target_ratio == "9:16":
|
257 |
+
changed_width = 720
|
258 |
+
changed_height = 1280
|
259 |
+
return changed_width, changed_height, gr.update(open=False)
|
260 |
+
elif target_ratio == "16:9":
|
261 |
+
changed_width = 1280
|
262 |
+
changed_height = 720
|
263 |
+
return changed_width, changed_height, gr.update(open=False)
|
264 |
+
elif target_ratio == "1:1":
|
265 |
+
changed_width = 1024
|
266 |
+
changed_height = 1024
|
267 |
+
return changed_width, changed_height, gr.update(open=False)
|
268 |
+
elif target_ratio == "Custom":
|
269 |
+
return ui_width, ui_height, gr.update(open=True)
|
270 |
+
|
271 |
+
def select_the_right_preset(user_width, user_height):
|
272 |
+
if user_width == 720 and user_height == 1280:
|
273 |
+
return "9:16"
|
274 |
+
elif user_width == 1280 and user_height == 720:
|
275 |
+
return "16:9"
|
276 |
+
elif user_width == 1024 and user_height == 1024:
|
277 |
+
return "1:1"
|
278 |
+
else:
|
279 |
+
return "Custom"
|
280 |
+
|
281 |
+
def toggle_custom_resize_slider(resize_option):
|
282 |
+
return gr.update(visible=(resize_option == "Custom"))
|
283 |
+
|
284 |
css = """
|
285 |
.gradio-container {
|
286 |
width: 1200px !important;
|
|
|
363 |
with gr.Row():
|
364 |
num_iterations = gr.Slider(label="Number of iterations", minimum=2, maximum=24, step=1, value=18)
|
365 |
fps = gr.Slider(label="fps", minimum=1, maximum=24, value=8)
|
366 |
+
with gr.Row():
|
367 |
+
num_interpolation_frames = gr.Slider(label="Interpolation frames", minimum=0, maximum=10, step=1, value=5)
|
368 |
|
369 |
with gr.Column():
|
370 |
result = ImageSlider(
|
|
|
374 |
)
|
375 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
376 |
video_output = gr.Video(label="Outpainting Video")
|
377 |
+
|
378 |
gr.Examples(
|
379 |
examples=["hide.png", "disaster.png"],
|
380 |
fn=loop_outpainting,
|
|
|
382 |
outputs=video_output,
|
383 |
cache_examples="lazy"
|
384 |
)
|
385 |
+
|
386 |
def use_output_as_input(output_image):
|
387 |
"""Sets the generated output as the new input image."""
|
388 |
return gr.update(value=output_image[1])
|
|
|
454 |
loop_button.click(
|
455 |
fn=loop_outpainting,
|
456 |
inputs=[input_image, width_slider, height_slider, overlap_width, num_inference_steps,
|
457 |
+
resize_option, custom_resize_size, prompt_input, alignment_dropdown,
|
458 |
+
num_iterations, fps, num_interpolation_frames],
|
459 |
outputs=video_output,
|
460 |
)
|
461 |
|