|
import gradio as gr |
|
from diffusers import DiffusionPipeline |
|
import spaces |
|
import torch |
|
from concurrent.futures import ProcessPoolExecutor |
|
from huggingface_hub import hf_hub_download |
|
|
|
dev_model = "black-forest-labs/FLUX.1-dev" |
|
schnell_model = "black-forest-labs/FLUX.1-schnell" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
repo_name = "ByteDance/Hyper-SD" |
|
ckpt_name = "Hyper-FLUX.1-dev-8steps-lora.safetensors" |
|
hyper_lora = hf_hub_download(repo_name, ckpt_name) |
|
|
|
repo_name = "alimama-creative/FLUX.1-Turbo-Alpha" |
|
ckpt_name = "diffusion_pytorch_model.safetensors" |
|
turbo_lora = hf_hub_download(repo_name, ckpt_name) |
|
|
|
pipe_dev = DiffusionPipeline.from_pretrained(dev_model, torch_dtype=torch.bfloat16).to("cuda") |
|
pipe_schnell = DiffusionPipeline.from_pretrained( |
|
schnell_model, |
|
text_encoder=pipe_dev.text_encoder, |
|
text_encoder_2=pipe_dev.text_encoder_2, |
|
tokenizer=pipe_dev.tokenizer, |
|
tokenizer_2=pipe_dev.tokenizer_2, |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
@spaces.GPU(duration=90) |
|
def run_parallel_models(prompt, progress=gr.Progress(track_tqdm=True)): |
|
pipe_dev.load_lora_weights(hyper_lora) |
|
image = pipe_dev(prompt, num_inference_steps=8, joint_attention_kwargs={"scale": 0.125}).images[0] |
|
pipe_dev.unload_lora_weights() |
|
yield image, gr.update(), gr.update() |
|
pipe_dev.load_lora_weights(turbo_lora) |
|
image = pipe_dev(prompt, num_inference_steps=8).images[0] |
|
yield gr.update(), image, gr.update() |
|
pipe_dev.unload_lora_weights() |
|
pipe_dev.to("cpu") |
|
pipe_schnell.to("cuda") |
|
image = pipe_schnell(prompt, num_inference_steps=4).images[0] |
|
yield gr.update(), gr.update(), image |
|
|
|
|
|
css = ''' |
|
#gen_btn{height: 100%} |
|
#gen_column{align-self: stretch} |
|
''' |
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("# Low Step Flux Comparison") |
|
gr.Markdown("Compare the quality (not the speed) of FLUX Schnell (4 steps), FLUX.1[dev] HyperFLUX (8 steps), FLUX.1[dev]-Turbo-Alpha (8 steps). It runs a bit slow as it's inferencing the three models.") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
prompt = gr.Textbox(label="Prompt") |
|
with gr.Column(scale=1, min_width=120, elem_id="gen_column"): |
|
submit = gr.Button("Run", elem_id="gen_btn") |
|
with gr.Row(): |
|
hyper = gr.Image(label="FLUX.1[dev] HyperFLUX (8 steps)") |
|
turbo = gr.Image(label="FLUX.1[dev]-Turbo-Alpha (8 steps)") |
|
schnell = gr.Image(label="FLUX Schnell (4 steps)") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["the spirit of a Tamagotchi wandering in the city of Vienna"], |
|
["a photo of a lavender cat"], |
|
["a tiny astronaut hatching from an egg on the moon"], |
|
["a delicious ceviche cheesecake slice"], |
|
["an insect robot preparing a delicious meal"], |
|
["a Charmander fine dining with a view to la Sagrada Família"]], |
|
fn=run_parallel_models, |
|
inputs=[prompt], |
|
outputs=[schnell, hyper, turbo], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[submit.click, prompt.submit], |
|
fn=run_parallel_models, |
|
inputs=[prompt], |
|
outputs=[hyper, turbo, schnell] |
|
) |
|
demo.launch() |