Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,639 Bytes
f946f55 7ce70f3 f946f55 7ce70f3 0930d5f 7ce70f3 0930d5f 7ce70f3 0930d5f 7ce70f3 0930d5f 7ce70f3 0930d5f 7ce70f3 0930d5f 7ce70f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
import spaces
import gradio as gr
import torch
import torch.nn.functional as F
import numpy as np
from PIL import Image
import cv2
import os
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
from diffusers.models.attention_processor import Attention
from transformers import AutoProcessor, AutoModelForMaskGeneration, pipeline
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
device = "cuda" if torch.cuda.is_available() else "cpu"
# --- Helper Dataclasses (Identical to diptych_prompting_inference.py) ---
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
# --- Helper Functions (Identical to diptych_prompting_inference.py) ---
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return []
largest_contour = max(contours, key=cv2.contourArea)
return largest_contour.reshape(-1, 2).tolist()
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
mask = np.zeros(image_shape, dtype=np.uint8)
if not polygon:
return mask
pts = np.array(polygon, dtype=np.int32)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]:
boxes = [result.box.xyxy for result in results]
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1)
masks = (masks > 0).int().numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
refined_mask = polygon_to_mask(polygon, shape)
masks[idx] = refined_mask
return masks
def detect(
object_detector, image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None
) -> List[DetectionResult]:
labels = [label if label.endswith(".") else label + "." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
return [DetectionResult.from_dict(result) for result in results]
def segment(
segmentator, processor, image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False
) -> List[DetectionResult]:
if not detection_results:
return []
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device)
with torch.no_grad():
outputs = segmentator(**inputs)
masks = processor.post_process_masks(
masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes
)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
detect_pipeline, segmentator, segment_processor, image: Image.Image, labels: List[str],
) -> Tuple[np.ndarray, List[DetectionResult]]:
detections = detect(detect_pipeline, image, labels, threshold=0.3)
detections = segment(segmentator, segment_processor, image, detections, polygon_refinement=True)
return np.array(image), detections
def segment_image(image, object_name, detector, segmentator, seg_processor):
image_array, detections = grounded_segmentation(detector, segmentator, seg_processor, image, [object_name])
if not detections or detections[0].mask is None:
raise gr.Error(f"Could not segment the subject '{object_name}' in the image. Please try a clearer image or a more specific subject name.")
mask_expanded = np.expand_dims(detections[0].mask / 255, axis=-1)
segment_result = image_array * mask_expanded + np.ones_like(image_array) * (1 - mask_expanded) * 255
return Image.fromarray(segment_result.astype(np.uint8))
def make_diptych(image):
ref_image_np = np.array(image)
diptych_np = np.concatenate([ref_image_np, np.zeros_like(ref_image_np)], axis=1)
return Image.fromarray(diptych_np)
# --- Custom Attention Processor (EXACTLY as in diptych_prompting_inference.py) ---
class CustomFluxAttnProcessor2_0:
def __init__(self, height=44, width=88, attn_enforce=1.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.height = height
self.width = width
self.num_pixels = height * width
self.step = 0
self.attn_enforce = attn_enforce
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
self.step += 1
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim, head_dim = key.shape[-1], key.shape[-1] // attn.heads
query, key, value = [x.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) for x in [query, key, value]]
if attn.norm_q is not None: query = attn.norm_q(query)
if attn.norm_k is not None: key = attn.norm_k(key)
if encoder_hidden_states is not None:
encoder_q = attn.add_q_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_k = attn.add_k_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
encoder_v = attn.add_v_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_added_q is not None: encoder_q = attn.norm_added_q(encoder_q)
if attn.norm_added_k is not None: encoder_k = attn.norm_added_k(encoder_k)
query, key, value = [torch.cat([e, x], dim=2) for e, x in zip([encoder_q, encoder_k, encoder_v], [query, key, value])]
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
if self.attn_enforce != 1.0:
attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1)
img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:].reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width))
img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels))
attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs
hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype)
if encoder_hidden_states is not None:
encoder_hs, hs = hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :]
hs = attn.to_out[0](hs)
hs = attn.to_out[1](hs)
encoder_hs = attn.to_add_out(encoder_hs)
return hs, encoder_hs
else:
return hidden_states
# --- Model Loading (executed once at startup) ---
print("--- Loading Models: This may take a few minutes and requires >40GB VRAM ---")
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16).to(device)
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
base_attn_procs = pipe.transformer.attn_processors.copy()
print("Loading segmentation models...")
detector_id, segmenter_id = "IDEA-Research/grounding-dino-tiny", "facebook/sam-vit-base"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device)
segment_processor = AutoProcessor.from_pretrained(segmenter_id)
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=device)
print("--- All models loaded successfully! ---")
# --- Main Inference Function for Gradio ---
@spaces.GPU(duration=70)
def run_diptych_prompting(
input_image: Image.Image,
subject_name: str,
target_prompt: str,
attn_enforce: float = 1.3,
ctrl_scale: float = 0.95,
width: int = 768,
height: int = 768,
pixel_offset: int = 8,
num_steps: int = 30,
guidance: float = 3.5,
seed: int = 42,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True)
):
if randomize_seed:
actual_seed = random.randint(0, 9223372036854775807)
else:
actual_seed = seed
if input_image is None: raise gr.Error("Please upload a reference image.")
if not subject_name: raise gr.Error("Please provide the subject's name (e.g., 'a red car').")
if not target_prompt: raise gr.Error("Please provide a target prompt.")
# 1. Prepare dimensions (logic from original script's main block)
padded_width = width + pixel_offset * 2
padded_height = height + pixel_offset * 2
diptych_size = (padded_width * 2, padded_height)
# 2. Prepare prompts and images
progress(0, desc="Resizing and segmenting reference image...")
base_prompt = f"a photo of {subject_name}"
diptych_text_prompt = f"A diptych with two side-by-side images of same {subject_name}. On the left, {base_prompt}. On the right, replicate this {subject_name} exactly but as {target_prompt}"
reference_image = input_image.resize((padded_width, padded_height)).convert("RGB")
segmented_image = segment_image(reference_image, subject_name, object_detector, segmentator, segment_processor)
progress(0.2, desc="Creating diptych and mask...")
mask_image = np.concatenate([np.zeros((padded_height, padded_width, 3)), np.ones((padded_height, padded_width, 3)) * 255], axis=1)
mask_image = Image.fromarray(mask_image.astype(np.uint8))
diptych_image_prompt = make_diptych(segmented_image)
# 3. Setup Attention Processor (logic from original script's main block)
progress(0.3, desc="Setting up attention processors...")
new_attn_procs = base_attn_procs.copy()
for k in new_attn_procs:
# Use full diptych dimensions for the attention processor
new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=padded_height // 16, width=padded_width * 2 // 16, attn_enforce=attn_enforce)
pipe.transformer.set_attn_processor(new_attn_procs)
# 4. Run Inference (using parameters identical to the original script)
progress(0.4, desc="Running diffusion process...")
generator = torch.Generator(device="cuda").manual_seed(actual_seed)
result = pipe(
prompt=diptych_text_prompt,
height=diptych_size[1],
width=diptych_size[0],
control_image=diptych_image_prompt,
control_mask=mask_image,
num_inference_steps=num_steps,
generator=generator,
controlnet_conditioning_scale=ctrl_scale,
guidance_scale=guidance, # This is used for guidance embeds if enabled
negative_prompt="",
true_guidance_scale=guidance # **CRITICAL FIX**: This matches the original script's CFG scale
).images[0]
# 5. Final cropping (logic from original script's main block)
progress(0.95, desc="Finalizing image...")
# Crop the right panel
result = result.crop((padded_width, 0, padded_width * 2, padded_height))
# Crop the pixel offset padding
result = result.crop((pixel_offset, pixel_offset, padded_width - pixel_offset, padded_height - pixel_offset))
return result
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Diptych Prompting: Zero-Shot Subject-Driven Image Generation
### Official Gradio Demo for the paper "[Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator](https://diptychprompting.github.io/)"
**Instructions:**
1. Upload a clear image of a subject.
2. Describe the subject in the "Subject Name" box (e.g., 'a plush bear', 'a red sports car').
3. Describe the new scene for your subject in the "Target Prompt" box.
> **Note:** This demo runs on a powerful GPU and requires over **40GB of VRAM**. Inference may take 1-2 minutes.
"""
)
with gr.Row():
with gr.Column(scale=1):
input_image = gr.Image(type="pil", label="1. Reference Image")
subject_name = gr.Textbox(label="2. Subject Name", placeholder="e.g., a plush bear")
target_prompt = gr.Textbox(label="3. Target Prompt", placeholder="e.g., riding a skateboard on the moon")
run_button = gr.Button("Generate Image", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
attn_enforce = gr.Slider(minimum=1.0, maximum=2.0, value=1.3, step=0.05, label="Attention Enforcement")
ctrl_scale = gr.Slider(minimum=0.5, maximum=1.0, value=0.95, step=0.01, label="ControlNet Scale")
num_steps = gr.Slider(minimum=20, maximum=50, value=30, step=1, label="Inference Steps")
guidance = gr.Slider(minimum=1.0, maximum=10.0, value=3.5, step=0.1, label="Guidance Scale")
width = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Width")
height = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Height")
pixel_offset = gr.Slider(minimum=0, maximum=32, value=8, step=1, label="Padding (Pixel Offset)")
seed = gr.Slider(minimum=0, maximum=9223372036854775807, value=42, step=1, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Column(scale=1):
output_image = gr.Image(type="pil", label="Generated Image")
gr.Examples(
examples=[
["./assets/bear_plushie.jpg", "a bear plushie", "a bear plushie riding a skateboard"],
["./assets/corgi.jpg", "a corgi dog", "a corgi dog wearing a superhero cape and flying"],
["./assets/teapot.png", "a blue and white teapot", "a blue and white teapot in a field of flowers"],
],
inputs=[input_image, subject_name, target_prompt],
outputs=output_image,
fn=run_diptych_prompting,
cache_examples="lazy",
)
run_button.click(
fn=run_diptych_prompting,
inputs=[input_image, subject_name, target_prompt, attn_enforce, ctrl_scale, width, height, pixel_offset, num_steps, guidance, seed, randomize_seed],
outputs=output_image
)
if __name__ == "__main__":
if not os.path.exists("./assets"):
os.makedirs("./assets")
print("Created './assets' directory. Please add example images like 'bear_plushie.jpg' there for the examples to work.")
demo.launch(share=True) |