Spaces:
Sleeping
Sleeping
File size: 2,864 Bytes
dad5c89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16, variant="fp16", use_safetensors=True,
vae=vae,
add_watermarker=False,
).to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
def run(prompt="a photo of an astronaut riding a horse on mars", steps=10, seed=20, negative_prompt="", randomize_seed=False):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
sampling_schedule = [999, 845, 730, 587, 443, 310, 193, 116, 53, 13, 0]
torch.manual_seed(seed)
ays_images = pipe(
prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=1,
timesteps=sampling_schedule,
).images
return ays_images[0], seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Align-your-steps
Unnoficial demo for the official diffusers implementation of [Align your Steps](https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/) by NVIDIA
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=4,
maximum=12,
step=1,
value=8,
)
run_button.click(
fn = infer,
inputs = [prompt, num_inference_steps, seed, negative_prompt, randomize_seed],
outputs = [result]
) |