Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import pickle
|
| 4 |
+
from transformers import ClapModel, ClapProcessor
|
| 5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 6 |
+
|
| 7 |
+
def load_results_from_pickle(input_file):
|
| 8 |
+
with open(input_file, 'rb') as f:
|
| 9 |
+
return pickle.load(f)
|
| 10 |
+
|
| 11 |
+
def compare_text_to_audio_embeddings(text, pickle_file):
|
| 12 |
+
model = ClapModel.from_pretrained("laion/larger_clap_music_and_speech").to(0)
|
| 13 |
+
processor = ClapProcessor.from_pretrained("laion/larger_clap_music_and_speech")
|
| 14 |
+
|
| 15 |
+
# Generate text embedding
|
| 16 |
+
text_inputs = processor(text=text, return_tensors="pt", padding=True)
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
text_embedding = model.get_text_features(**text_inputs.to(0))
|
| 19 |
+
text_embedding = text_embedding.cpu().numpy()
|
| 20 |
+
|
| 21 |
+
# Load audio embeddings
|
| 22 |
+
audio_embeddings = load_results_from_pickle(pickle_file)
|
| 23 |
+
|
| 24 |
+
# Compare embeddings
|
| 25 |
+
similarities = []
|
| 26 |
+
for item in audio_embeddings:
|
| 27 |
+
similarity = cosine_similarity(text_embedding, item['embedding'])[0][0]
|
| 28 |
+
similarities.append((item['filename'], item["url"], similarity))
|
| 29 |
+
|
| 30 |
+
# Sort by similarity (highest first)
|
| 31 |
+
similarities.sort(key=lambda x: x[2], reverse=True)
|
| 32 |
+
|
| 33 |
+
return similarities
|
| 34 |
+
|
| 35 |
+
def get_matches(text_query):
|
| 36 |
+
matches = compare_text_to_audio_embeddings(text_query, "audio_embeddings_v3.pkl")
|
| 37 |
+
|
| 38 |
+
# Format the output
|
| 39 |
+
output = f"Top 5 matches for '{text_query}':\n\n"
|
| 40 |
+
for filename, url, similarity in matches[:5]:
|
| 41 |
+
output += f"{filename}, {url}: {similarity:.4f}\n"
|
| 42 |
+
|
| 43 |
+
return output
|
| 44 |
+
|
| 45 |
+
# Create the Gradio interface
|
| 46 |
+
with gr.Blocks() as demo:
|
| 47 |
+
gr.Markdown("# Text to Audio Comparison")
|
| 48 |
+
with gr.Row():
|
| 49 |
+
text_input = gr.Textbox(label="Enter your text query")
|
| 50 |
+
output = gr.Textbox(label="Results", lines=10)
|
| 51 |
+
submit_button = gr.Button("Submit")
|
| 52 |
+
submit_button.click(fn=get_matches, inputs=text_input, outputs=output)
|
| 53 |
+
|
| 54 |
+
# Launch the app
|
| 55 |
+
demo.launch()
|