Spaces:
Running
on
Zero
Running
on
Zero
| import cv2 | |
| import torch | |
| import random | |
| import numpy as np | |
| import spaces | |
| import PIL | |
| from PIL import Image | |
| from typing import Tuple | |
| import diffusers | |
| from diffusers.utils import load_image | |
| from diffusers.models import ControlNetModel | |
| from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
| from huggingface_hub import hf_hub_download | |
| from insightface.app import FaceAnalysis | |
| from style_template import styles | |
| from pipeline_stable_diffusion_xl_instantid_full import StableDiffusionXLInstantIDPipeline, draw_kps | |
| # from controlnet_aux import OpenposeDetector | |
| import gradio as gr | |
| from depth_anything.dpt import DepthAnything | |
| from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
| import torch.nn.functional as F | |
| from torchvision.transforms import Compose | |
| # global variable | |
| MAX_SEED = np.iinfo(np.int32).max | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
| STYLE_NAMES = list(styles.keys()) | |
| DEFAULT_STYLE_NAME = "(No style)" | |
| enable_lcm_arg = False | |
| # download checkpoints | |
| from huggingface_hub import hf_hub_download | |
| hf_hub_download(repo_id="Super-shuhe/InstantID-FaceID-6M", filename="controlnet/config.json", local_dir="./checkpoints") | |
| hf_hub_download( | |
| repo_id="Super-shuhe/InstantID-FaceID-6M", | |
| filename="controlnet/diffusion_pytorch_model.safetensors", | |
| local_dir="./checkpoints", | |
| ) | |
| hf_hub_download(repo_id="Super-shuhe/InstantID-FaceID-6M", filename="pytorch_model.bin", local_dir="./checkpoints") | |
| # Load face encoder | |
| app = FaceAnalysis( | |
| name="antelopev2", | |
| root="./", | |
| providers=["CPUExecutionProvider"], | |
| ) | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| # openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
| depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_vitl14').to(device).eval() | |
| transform = Compose([ | |
| Resize( | |
| width=518, | |
| height=518, | |
| resize_target=False, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=14, | |
| resize_method='lower_bound', | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| PrepareForNet(), | |
| ]) | |
| # Path to InstantID models | |
| face_adapter = f"./checkpoints/pytorch_model.bin" | |
| controlnet_path = f"./checkpoints/controlnet" | |
| # Load pipeline face ControlNetModel | |
| controlnet_identitynet = ControlNetModel.from_pretrained( | |
| controlnet_path, torch_dtype=dtype | |
| ) | |
| # controlnet-pose/canny/depth | |
| # controlnet_pose_model = "thibaud/controlnet-openpose-sdxl-1.0" | |
| controlnet_canny_model = "diffusers/controlnet-canny-sdxl-1.0" | |
| controlnet_depth_model = "diffusers/controlnet-depth-sdxl-1.0-small" | |
| # controlnet_pose = ControlNetModel.from_pretrained( | |
| # controlnet_pose_model, torch_dtype=dtype | |
| # ).to(device) | |
| controlnet_canny = ControlNetModel.from_pretrained( | |
| controlnet_canny_model, torch_dtype=dtype | |
| ).to(device) | |
| controlnet_depth = ControlNetModel.from_pretrained( | |
| controlnet_depth_model, torch_dtype=dtype | |
| ).to(device) | |
| def get_depth_map(image): | |
| image = np.array(image) / 255.0 | |
| h, w = image.shape[:2] | |
| image = transform({'image': image})['image'] | |
| image = torch.from_numpy(image).unsqueeze(0).to("cuda") | |
| with torch.no_grad(): | |
| depth = depth_anything(image) | |
| depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth = depth.cpu().numpy().astype(np.uint8) | |
| depth_image = Image.fromarray(depth) | |
| return depth_image | |
| def get_canny_image(image, t1=100, t2=200): | |
| image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) | |
| edges = cv2.Canny(image, t1, t2) | |
| return Image.fromarray(edges, "L") | |
| controlnet_map = { | |
| #"pose": controlnet_pose, | |
| "canny": controlnet_canny, | |
| "depth": controlnet_depth, | |
| } | |
| controlnet_map_fn = { | |
| #"pose": openpose, | |
| "canny": get_canny_image, | |
| "depth": get_depth_map, | |
| } | |
| pretrained_model_name_or_path = "SG161222/RealVisXL_V5.0" | |
| pipe = StableDiffusionXLInstantIDPipeline.from_pretrained( | |
| pretrained_model_name_or_path, | |
| controlnet=[controlnet_identitynet], | |
| torch_dtype=dtype, | |
| safety_checker=None, | |
| feature_extractor=None, | |
| ).to(device) | |
| pipe.scheduler = diffusers.EulerDiscreteScheduler.from_config( | |
| pipe.scheduler.config | |
| ) | |
| # load and disable LCM | |
| pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
| pipe.disable_lora() | |
| pipe.cuda() | |
| pipe.load_ip_adapter_instantid(face_adapter) | |
| pipe.image_proj_model.to("cuda") | |
| pipe.unet.to("cuda") | |
| def toggle_lcm_ui(value): | |
| if value: | |
| return ( | |
| gr.update(minimum=0, maximum=100, step=1, value=5), | |
| gr.update(minimum=0.1, maximum=20.0, step=0.1, value=1.5), | |
| ) | |
| else: | |
| return ( | |
| gr.update(minimum=5, maximum=100, step=1, value=30), | |
| gr.update(minimum=0.1, maximum=20.0, step=0.1, value=5), | |
| ) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def remove_tips(): | |
| return gr.update(visible=False) | |
| def get_example(): | |
| case = [ | |
| [ | |
| "./examples/yann-lecun_resize.jpg", | |
| None, | |
| "a man", | |
| "Spring Festival", | |
| "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
| ], | |
| [ | |
| "./examples/musk_resize.jpeg", | |
| "./examples/poses/pose2.jpg", | |
| "a man flying in the sky in Mars", | |
| "Mars", | |
| "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
| ], | |
| [ | |
| "./examples/sam_resize.png", | |
| "./examples/poses/pose4.jpg", | |
| "a man doing a silly pose wearing a suite", | |
| "Jungle", | |
| "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, gree", | |
| ], | |
| [ | |
| "./examples/schmidhuber_resize.png", | |
| "./examples/poses/pose3.jpg", | |
| "a man sit on a chair", | |
| "Neon", | |
| "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
| ], | |
| [ | |
| "./examples/kaifu_resize.png", | |
| "./examples/poses/pose.jpg", | |
| "a man", | |
| "Vibrant Color", | |
| "(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, photo, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
| ], | |
| ] | |
| return case | |
| def run_for_examples(face_file, pose_file, prompt, style, negative_prompt): | |
| return generate_image( | |
| face_file, | |
| pose_file, | |
| prompt, | |
| negative_prompt, | |
| style, | |
| 20, # num_steps | |
| 0.8, # identitynet_strength_ratio | |
| 0.8, # adapter_strength_ratio | |
| #0.4, # pose_strength | |
| 0.3, # canny_strength | |
| 0.5, # depth_strength | |
| ["depth", "canny"], # controlnet_selection | |
| 5.0, # guidance_scale | |
| 42, # seed | |
| "EulerDiscreteScheduler", # scheduler | |
| False, # enable_LCM | |
| True, # enable_Face_Region | |
| ) | |
| def convert_from_cv2_to_image(img: np.ndarray) -> Image: | |
| return Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
| def convert_from_image_to_cv2(img: Image) -> np.ndarray: | |
| return cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
| def resize_img( | |
| input_image, | |
| max_side=1280, | |
| min_side=1024, | |
| size=None, | |
| pad_to_max_side=False, | |
| mode=PIL.Image.BILINEAR, | |
| base_pixel_number=64, | |
| ): | |
| w, h = input_image.size | |
| if size is not None: | |
| w_resize_new, h_resize_new = size | |
| else: | |
| ratio = min_side / min(h, w) | |
| w, h = round(ratio * w), round(ratio * h) | |
| ratio = max_side / max(h, w) | |
| input_image = input_image.resize([round(ratio * w), round(ratio * h)], mode) | |
| w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number | |
| h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number | |
| input_image = input_image.resize([w_resize_new, h_resize_new], mode) | |
| if pad_to_max_side: | |
| res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255 | |
| offset_x = (max_side - w_resize_new) // 2 | |
| offset_y = (max_side - h_resize_new) // 2 | |
| res[ | |
| offset_y : offset_y + h_resize_new, offset_x : offset_x + w_resize_new | |
| ] = np.array(input_image) | |
| input_image = Image.fromarray(res) | |
| return input_image | |
| def apply_style( | |
| style_name: str, positive: str, negative: str = "" | |
| ) -> Tuple[str, str]: | |
| p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) | |
| return p.replace("{prompt}", positive), n + " " + negative | |
| def generate_image( | |
| face_image_path, | |
| pose_image_path, | |
| prompt, | |
| negative_prompt, | |
| style_name, | |
| num_steps, | |
| identitynet_strength_ratio, | |
| adapter_strength_ratio, | |
| #pose_strength, | |
| canny_strength, | |
| depth_strength, | |
| controlnet_selection, | |
| guidance_scale, | |
| seed, | |
| scheduler, | |
| enable_LCM, | |
| enhance_face_region, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| if enable_LCM: | |
| pipe.scheduler = diffusers.LCMScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_lora() | |
| else: | |
| pipe.disable_lora() | |
| scheduler_class_name = scheduler.split("-")[0] | |
| add_kwargs = {} | |
| if len(scheduler.split("-")) > 1: | |
| add_kwargs["use_karras_sigmas"] = True | |
| if len(scheduler.split("-")) > 2: | |
| add_kwargs["algorithm_type"] = "sde-dpmsolver++" | |
| scheduler = getattr(diffusers, scheduler_class_name) | |
| pipe.scheduler = scheduler.from_config(pipe.scheduler.config, **add_kwargs) | |
| if face_image_path is None: | |
| raise gr.Error( | |
| f"Cannot find any input face image! Please upload the face image" | |
| ) | |
| if prompt is None: | |
| prompt = "a person" | |
| # apply the style template | |
| prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) | |
| face_image = load_image(face_image_path) | |
| face_image = resize_img(face_image, max_side=1024) | |
| face_image_cv2 = convert_from_image_to_cv2(face_image) | |
| height, width, _ = face_image_cv2.shape | |
| # Extract face features | |
| face_info = app.get(face_image_cv2) | |
| if len(face_info) == 0: | |
| raise gr.Error( | |
| f"Unable to detect a face in the image. Please upload a different photo with a clear face." | |
| ) | |
| face_info = sorted( | |
| face_info, | |
| key=lambda x: (x["bbox"][2] - x["bbox"][0]) * x["bbox"][3] - x["bbox"][1], | |
| )[ | |
| -1 | |
| ] # only use the maximum face | |
| face_emb = face_info["embedding"] | |
| face_kps = draw_kps(convert_from_cv2_to_image(face_image_cv2), face_info["kps"]) | |
| img_controlnet = face_image | |
| if pose_image_path is not None: | |
| pose_image = load_image(pose_image_path) | |
| pose_image = resize_img(pose_image, max_side=1024) | |
| img_controlnet = pose_image | |
| pose_image_cv2 = convert_from_image_to_cv2(pose_image) | |
| face_info = app.get(pose_image_cv2) | |
| if len(face_info) == 0: | |
| raise gr.Error( | |
| f"Cannot find any face in the reference image! Please upload another person image" | |
| ) | |
| face_info = face_info[-1] | |
| face_kps = draw_kps(pose_image, face_info["kps"]) | |
| width, height = face_kps.size | |
| if enhance_face_region: | |
| control_mask = np.zeros([height, width, 3]) | |
| x1, y1, x2, y2 = face_info["bbox"] | |
| x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
| control_mask[y1:y2, x1:x2] = 255 | |
| control_mask = Image.fromarray(control_mask.astype(np.uint8)) | |
| else: | |
| control_mask = None | |
| if len(controlnet_selection) > 0: | |
| controlnet_scales = { | |
| #"pose": pose_strength, | |
| "canny": canny_strength, | |
| "depth": depth_strength, | |
| } | |
| pipe.controlnet = MultiControlNetModel( | |
| [controlnet_identitynet] | |
| + [controlnet_map[s] for s in controlnet_selection] | |
| ) | |
| control_scales = [float(identitynet_strength_ratio)] + [ | |
| controlnet_scales[s] for s in controlnet_selection | |
| ] | |
| control_images = [face_kps] + [ | |
| controlnet_map_fn[s](img_controlnet).resize((width, height)) | |
| for s in controlnet_selection | |
| ] | |
| else: | |
| pipe.controlnet = controlnet_identitynet | |
| control_scales = float(identitynet_strength_ratio) | |
| control_images = face_kps | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| print("Start inference...") | |
| print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}") | |
| pipe.set_ip_adapter_scale(adapter_strength_ratio) | |
| images = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image_embeds=face_emb, | |
| image=control_images, | |
| control_mask=control_mask, | |
| controlnet_conditioning_scale=control_scales, | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| height=height, | |
| width=width, | |
| generator=generator, | |
| ).images | |
| return images[0], gr.update(visible=True) | |
| # Description | |
| title = r""" | |
| # InstantID FaceID 6M: Zero-shot Identity-Preserving Generation in Seconds | |
| Demo for the `Super-shuhe/InstantID-FaceID-6M` trained on the [FaceID 6M](https://huggingface.co/datasets/Super-shuhe/FaceID-6M) open dataset of 6M faces | |
| """ | |
| article = r""" | |
| --- | |
| 📝 **Citation** | |
| <br> | |
| If our work is helpful for your research or applications, please cite us via: | |
| ```bibtex | |
| @article{wang2024instantid, | |
| title={InstantID: Zero-shot Identity-Preserving Generation in Seconds}, | |
| author={Wang, Qixun and Bai, Xu and Wang, Haofan and Qin, Zekui and Chen, Anthony}, | |
| journal={arXiv preprint arXiv:2401.07519}, | |
| year={2024} | |
| } | |
| ``` | |
| 📧 **Contact** | |
| <br> | |
| If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>. | |
| """ | |
| tips = r""" | |
| ### Usage tips of InstantID | |
| 1. If you're not satisfied with the similarity, try increasing the weight of "IdentityNet Strength" and "Adapter Strength." | |
| 2. If you feel that the saturation is too high, first decrease the Adapter strength. If it remains too high, then decrease the IdentityNet strength. | |
| 3. If you find that text control is not as expected, decrease Adapter strength. | |
| 4. If you find that realistic style is not good enough, go for our Github repo and use a more realistic base model. | |
| """ | |
| css = """ | |
| .gradio-container {width: 85% !important} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| # description | |
| gr.Markdown(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| # upload face image | |
| face_file = gr.Image( | |
| label="Upload a photo of your face", type="filepath" | |
| ) | |
| # prompt | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| info="Give simple prompt is enough to achieve good face fidelity", | |
| placeholder="A photo of a person", | |
| value="", | |
| ) | |
| style = gr.Dropdown( | |
| label="Style template", | |
| choices=STYLE_NAMES, | |
| value=DEFAULT_STYLE_NAME, | |
| ) | |
| submit = gr.Button("Submit", variant="primary") | |
| with gr.Accordion("Advanced options", open=False): | |
| enable_LCM = gr.Checkbox( | |
| label="Enable Fast Inference with LCM", value=enable_lcm_arg, | |
| info="LCM speeds up the inference step, the trade-off is the quality of the generated image. It performs better with portrait face images rather than distant faces", | |
| ) | |
| # strength | |
| identitynet_strength_ratio = gr.Slider( | |
| label="IdentityNet strength (for fidelity)", | |
| minimum=0, | |
| maximum=1.5, | |
| step=0.05, | |
| value=0.80, | |
| ) | |
| adapter_strength_ratio = gr.Slider( | |
| label="Image adapter strength (for detail)", | |
| minimum=0, | |
| maximum=1.5, | |
| step=0.05, | |
| value=0.80, | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="low quality", | |
| value="(lowres, low quality, worst quality:1.2), (text:1.2), watermark, (frame:1.2), deformed, ugly, deformed eyes, blur, out of focus, blurry, deformed cat, deformed, photo, anthropomorphic cat, monochrome, pet collar, gun, weapon, blue, 3d, drones, drone, buildings in background, green", | |
| ) | |
| num_steps = gr.Slider( | |
| label="Number of sample steps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=5 if enable_lcm_arg else 30, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=20.0, | |
| step=0.1, | |
| value=0.0 if enable_lcm_arg else 5.0, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| schedulers = [ | |
| "DEISMultistepScheduler", | |
| "HeunDiscreteScheduler", | |
| "EulerDiscreteScheduler", | |
| "DPMSolverMultistepScheduler", | |
| "DPMSolverMultistepScheduler-Karras", | |
| "DPMSolverMultistepScheduler-Karras-SDE", | |
| ] | |
| scheduler = gr.Dropdown( | |
| label="Schedulers", | |
| choices=schedulers, | |
| value="EulerDiscreteScheduler", | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| enhance_face_region = gr.Checkbox(label="Enhance non-face region", value=True) | |
| with gr.Accordion("Controlnet", open=False): | |
| # optional: upload a reference pose image | |
| pose_file = gr.Image( | |
| label="Upload a reference pose image (Optional)", | |
| type="filepath", | |
| ) | |
| controlnet_selection = gr.CheckboxGroup( | |
| ["canny", "depth"], label="Controlnet", value=[], | |
| info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process" | |
| ) | |
| # pose_strength = gr.Slider( | |
| # label="Pose strength", | |
| # minimum=0, | |
| # maximum=1.5, | |
| # step=0.05, | |
| # value=0.40, | |
| # ) | |
| canny_strength = gr.Slider( | |
| label="Canny strength", | |
| minimum=0, | |
| maximum=1.5, | |
| step=0.05, | |
| value=0, | |
| ) | |
| depth_strength = gr.Slider( | |
| label="Depth strength", | |
| minimum=0, | |
| maximum=1.5, | |
| step=0.05, | |
| value=0, | |
| ) | |
| with gr.Column(scale=1): | |
| gallery = gr.Image(label="Generated Images") | |
| usage_tips = gr.Markdown( | |
| label="InstantID Usage Tips", value=tips, visible=False | |
| ) | |
| submit.click( | |
| fn=remove_tips, | |
| outputs=usage_tips, | |
| ).then( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_image, | |
| inputs=[ | |
| face_file, | |
| pose_file, | |
| prompt, | |
| negative_prompt, | |
| style, | |
| num_steps, | |
| identitynet_strength_ratio, | |
| adapter_strength_ratio, | |
| #pose_strength, | |
| canny_strength, | |
| depth_strength, | |
| controlnet_selection, | |
| guidance_scale, | |
| seed, | |
| scheduler, | |
| enable_LCM, | |
| enhance_face_region, | |
| ], | |
| outputs=[gallery, usage_tips], | |
| ) | |
| enable_LCM.input( | |
| fn=toggle_lcm_ui, | |
| inputs=[enable_LCM], | |
| outputs=[num_steps, guidance_scale], | |
| queue=False, | |
| ) | |
| gr.Examples( | |
| examples=get_example(), | |
| inputs=[face_file, pose_file, prompt, style, negative_prompt], | |
| fn=run_for_examples, | |
| outputs=[gallery, usage_tips], | |
| cache_examples=True, | |
| ) | |
| gr.Markdown(article) | |
| demo.queue(api_open=False) | |
| demo.launch() |