# llada_app.py -> dream_app.py import torch import numpy as np import gradio as gr import spaces # import torch.nn.functional as F # Not needed for DREAM's basic visualization from transformers import AutoTokenizer, AutoModel import time import re # Keep for parsing constraints # Use try-except for space deployment vs local try: # Used for spaces deployment with GPU gpu_check = spaces.GPU print("Running in Gradio Spaces with GPU environment.") except AttributeError: # Fallback for local execution or environments without spaces.GPU print("Running in local environment or without spaces.GPU.") # Define a dummy decorator if spaces.GPU is not available def gpu_check(func): return func device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f"Using device: {device}") # --- Load DREAM Model and Tokenizer --- model_path = "Dream-org/Dream-v0-Instruct-7B" print(f"Loading model: {model_path}") model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) print("Model and tokenizer loaded.") # --- Constants for DREAM --- # Find the mask token and ID from the DREAM tokenizer if tokenizer.mask_token is None: # Handle cases where a mask token might not be explicitly set # You might need to choose a suitable placeholder or investigate further # For now, let's try adding one if it's missing and check its id # This is speculative and might depend on the specific tokenizer setup print("Warning: Mask token not found in tokenizer. Attempting to add.") tokenizer.add_special_tokens({'mask_token': '[MASK]'}) model.resize_token_embeddings(len(tokenizer)) # Important if vocab size changed if tokenizer.mask_token is None: raise ValueError("Could not set a mask token for the tokenizer.") MASK_TOKEN = tokenizer.mask_token MASK_ID = tokenizer.mask_token_id print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}") # --- Helper Functions (Constraint Parsing, History Formatting) --- def parse_constraints(constraints_text): """Parse constraints in format: 'position:word, position:word, ...'""" constraints = {} if not constraints_text: return constraints parts = constraints_text.split(',') for part in parts: part = part.strip() # Trim whitespace if ':' not in part: continue try: pos_str, word = part.split(':', 1) pos = int(pos_str.strip()) word = word.strip() # Allow empty words if needed, but usually we want a word if word and pos >= 0: constraints[pos] = word except ValueError: print(f"Warning: Could not parse constraint part: '{part}'") continue return constraints def format_chat_history(history): """ Format chat history for the DREAM model (standard messages format) Args: history: List of [user_message, assistant_message] pairs Returns: Formatted conversation for the model (list of dictionaries) """ messages = [] # Add system prompt if desired (check DREAM examples/recommendations) # messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional for user_msg, assistant_msg in history: if user_msg: # Handle potential None message if clearing failed messages.append({"role": "user", "content": user_msg}) if assistant_msg: # Skip if None (for the latest user message awaiting response) messages.append({"role": "assistant", "content": assistant_msg}) return messages # --- Core Generation Logic for DREAM with Visualization --- @gpu_check # Use the potentially dummy decorator def dream_generate_response_with_visualization( messages, gen_length=64, steps=64, # Default based on DREAM examples constraints=None, temperature=0.6, # Default based on DREAM examples top_p=0.95, # Default based on DREAM examples alg="entropy", # Default based on DREAM examples alg_temp=0.0, # Default based on DREAM examples ): """ Generate text with DREAM model with visualization using the generation hook. Args: messages: List of message dictionaries with 'role' and 'content' gen_length: Length of text to generate (max_new_tokens) steps: Number of diffusion steps constraints: Dictionary mapping positions (relative to response start) to words temperature: Sampling temperature top_p: Nucleus sampling p alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy') alg_temp: Temperature for confidence-based algorithms Returns: Tuple: (List of visualization states, final generated text string) """ print("--- Starting DREAM Generation ---") print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}") print(f"Constraints: {constraints}") # --- Input Preparation --- if constraints is None: constraints = {} # Convert word constraints to token IDs (handle multi-token words) processed_constraints = {} print("Processing constraints:") for pos, word in constraints.items(): # Prepend space for consistent tokenization, similar to LLaDA example tokens = tokenizer.encode(" " + word, add_special_tokens=False) if not tokens: print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.") continue print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}") for i, token_id in enumerate(tokens): # Ensure we don't overwrite parts of multi-token constraints accidentally if pos + i not in processed_constraints: processed_constraints[pos + i] = token_id else: print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.") # Prepare the prompt using chat template # Note: DREAM examples use add_generation_prompt=True try: inputs = tokenizer.apply_chat_template( messages, return_tensors="pt", return_dict=True, add_generation_prompt=True # Crucial for instruction-tuned models like Dream-Instruct ) input_ids = inputs.input_ids.to(device=device) attention_mask = inputs.attention_mask.to(device=device) # Get attention mask prompt_length = input_ids.shape[1] print(f"Input prompt length: {prompt_length}") print(f"Input IDs: {input_ids}") except Exception as e: print(f"Error applying chat template: {e}") # Provide a fallback or raise the error # Fallback: Simple concatenation (less ideal for instruction models) # chat_input = "".join([f"{msg['role']}: {msg['content']}\n" for msg in messages]) + "assistant:" # input_ids = tokenizer(chat_input, return_tensors="pt").input_ids.to(device) # attention_mask = torch.ones_like(input_ids) # prompt_length = input_ids.shape[1] # print(f"Warning: Using basic concatenation due to template error. Prompt length: {prompt_length}") return [([("Error applying chat template.", "red")],)], f"Error: {e}" if prompt_length + gen_length > 2048: # Check context length (DREAM uses 2048) print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.") gen_length = 2048 - prompt_length if gen_length <= 0: print("Error: Prompt is already too long.") return [([("Prompt too long.", "red")],)], "Error: Prompt too long." # --- State for Visualization Hook --- visualization_states = [] last_x = None # Store the sequence from the previous step # Initial state: Prompt + all masks initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device) # Apply initial constraints to the masked part *before* showing the first state for pos, token_id in processed_constraints.items(): absolute_pos = pos # Position relative to start of generation if 0 <= absolute_pos < gen_length: initial_x_part[0, absolute_pos] = token_id initial_state_vis = [] for i in range(gen_length): token_id = initial_x_part[0, i].item() if token_id == MASK_ID: initial_state_vis.append((MASK_TOKEN, "#444444")) # Mask color else: # This must be a constraint applied initially token_str = tokenizer.decode([token_id], skip_special_tokens=True) initial_state_vis.append((token_str if token_str else "?", "#800080")) # Constraint color (purple) visualization_states.append(initial_state_vis) # --- Define the Hook Function --- def generation_tokens_hook_func(step, x, logits): nonlocal last_x, visualization_states # Allow modification of outer scope variables print(f"Hook called for step {step}") current_x = x.clone() # Work on a copy for comparison # 1. Apply Constraints *before* generating visualization # Constraints are relative to the start of the *generated* part constrained_x = current_x.clone() prompt_len = current_x.shape[1] - gen_length # Recalculate just in case if prompt_len < 0: print("Warning: prompt_len negative in hook, skipping constraints/vis.") return current_x # Return unmodified if something is wrong constraints_applied_this_step = False for pos, token_id in processed_constraints.items(): absolute_pos = prompt_len + pos if prompt_len <= absolute_pos < current_x.shape[1]: if constrained_x[0, absolute_pos] != token_id: constrained_x[0, absolute_pos] = token_id constraints_applied_this_step = True # print(f" Constraint applied at pos {pos} ({absolute_pos}) -> token {token_id}") # 2. Generate Visualization State for *this* step current_state_vis = [] # Compare current_x (before explicit constraint application in *this* hook call) # with last_x (state from *previous* hook call / initial state) # Generate based on the state *before* reapplying constraints here, # but *after* the model's diffusion step determined current_x. gen_part_current = current_x[0, prompt_len:] gen_part_last = last_x[0, prompt_len:] if last_x is not None else None for i in range(gen_length): current_token_id = gen_part_current[i].item() token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip() # Use a placeholder if decoding results in empty string display_token = token_str if token_str else MASK_TOKEN if current_token_id == MASK_ID else "?" # Check if this position is constrained is_constrained = i in processed_constraints if current_token_id == MASK_ID: color = "#444444" # Dark Gray for masks elif is_constrained and processed_constraints[i] == current_token_id: color = "#800080" # Purple for correctly constrained tokens elif gen_part_last is None or gen_part_last[i].item() == MASK_ID: # Newly revealed (was mask in previous step or initial state) color = "#66CC66" # Light Green else: # Previously revealed and not masked color = "#6699CC" # Light Blue current_state_vis.append((display_token, color)) visualization_states.append(current_state_vis) # 3. Update last_x for the *next* step's comparison # Store the state *after* applying constraints for accurate comparison next time last_x = constrained_x.clone() # 4. Return the sequence with constraints applied for the model's next step # print(f"Hook returning constrained_x: {constrained_x[:, prompt_len:]}") return constrained_x # Return the sequence with constraints enforced # --- Run DREAM Generation --- try: print("Calling model.diffusion_generate...") # Make sure last_x is initialized correctly before the first hook call # It should represent the state *before* the first diffusion step. initial_full_x = torch.cat([input_ids, initial_x_part], dim=1) last_x = initial_full_x.clone() output = model.diffusion_generate( input_ids, attention_mask=attention_mask, max_new_tokens=gen_length, output_history=False, # We build history in the hook return_dict_in_generate=True, steps=steps, temperature=temperature, top_p=top_p, alg=alg, alg_temp=alg_temp if alg != "origin" else 0.0, # alg_temp only for confidence algs generation_tokens_hook_func=generation_tokens_hook_func ) print("model.diffusion_generate finished.") # Extract final generated sequence (response part only) # The hook ensures the returned sequence has constraints applied final_sequence = output.sequences[0] response_token_ids = final_sequence[prompt_length:] # Decode the final response final_text = tokenizer.decode( response_token_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True # Recommended for cleaner output ).strip() print(f"Final generated text: {final_text}") # Add the very final state to visualization if the hook didn't capture it # (Should be captured, but as a safeguard) if len(visualization_states) <= steps: # Hook might run 'steps' times final_state_vis = [] final_gen_part = final_sequence[prompt_length:] for i in range(gen_length): token_id = final_gen_part[i].item() token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip() display_token = token_str if token_str else MASK_TOKEN if token_id == MASK_ID else "?" is_constrained = i in processed_constraints if token_id == MASK_ID: color = "#444444" elif is_constrained and processed_constraints[i] == token_id: color = "#800080" else: color = "#6699CC" # Default to blue for final state tokens final_state_vis.append((display_token, color)) visualization_states.append(final_state_vis) except Exception as e: print(f"Error during generation: {e}") import traceback traceback.print_exc() # Add error message to visualization error_msg = f"Error during generation: {str(e)}" visualization_states.append([("Error", "red")]) final_text = f"Generation failed: {e}" print("--- DREAM Generation Finished ---") return visualization_states, final_text # --- Gradio UI Setup --- css = ''' .category-legend{display:none} /* button{height: 60px} */ /* Optional: Adjust button height */ .small_btn { max-width: 100px; /* Adjust as needed */ height: 40px; /* Adjust as needed */ flex-grow: 0; /* Prevent button from growing */ margin-left: 5px; /* Add some space */ } .chat-input-row { display: flex; align-items: center; /* Vertically align items */ } .chat-input-row > * { margin-right: 5px; /* Space between textbox and button */ } .chat-input-row > *:last-child { margin-right: 0; } ''' def create_chatbot_demo(): with gr.Blocks(css=css) as demo: gr.Markdown("# Dream 7B - Diffusion Language Model Demo") gr.Markdown("A demonstration of the Dream 7B diffusion-based language model. Watch the text generate step-by-step.") gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)") # STATE MANAGEMENT chat_history = gr.State([]) # UI COMPONENTS with gr.Row(): with gr.Column(scale=3): chatbot_ui = gr.Chatbot( label="Conversation", height=500, bubble_full_width=False # Improves layout for shorter messages ) # Message input Row with gr.Row(elem_classes="chat-input-row"): user_input = gr.Textbox( label="Your Message", placeholder="Type your message here and press Enter...", scale=4, # Give textbox more space container=False, # Remove container background/padding show_label=False ) send_btn = gr.Button("Send", scale=1, elem_classes="small_btn") constraints_input = gr.Textbox( label="Word Constraints (Optional)", info="Force specific words at positions (0-indexed from response start). Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'", placeholder="e.g., 0:Hello, 6:world", value="" # Default empty ) with gr.Column(scale=2): output_vis = gr.HighlightedText( label="Denoising Process Visualization", combine_adjacent=False, show_legend=False, # Keep legend off as requested # Color map for legend (though hidden) # color_map={ # "Mask": "#444444", # "New": "#66CC66", # "Old": "#6699CC", # "Constraint": "#800080", # "Error": "red" # } ) gr.Markdown( "**Color Legend:** ■ Mask | ■ Newly Generated | ■ Previously Generated | ■ Constraint" ) # Advanced generation settings with gr.Accordion("Generation Settings", open=False): with gr.Row(): gen_length = gr.Slider( minimum=16, maximum=512, value=128, step=8, # Increased max length label="Max New Tokens" ) steps = gr.Slider( minimum=8, maximum=512, value=128, step=8, # Increased max steps label="Diffusion Steps" ) with gr.Row(): temperature = gr.Slider( minimum=0.0, maximum=1.5, value=0.6, step=0.05, # Wider range for temp label="Temperature" ) top_p = gr.Slider( minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (Nucleus Sampling)" ) with gr.Row(): # Map UI choices to DREAM's alg parameters remasking_strategy = gr.Radio( choices=[ ("Random", "origin"), # User friendly name -> actual param ("Entropy", "entropy"), ("MaskGit+", "maskgit_plus"), ("TopK Margin", "topk_margin"), ], value="entropy", # Default label="Generation Order Strategy (alg)" ) alg_temp = gr.Slider( minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Order Randomness (alg_temp)" , info="Adds randomness to non-Random strategies. Ignored for Random." ) with gr.Row(): visualization_delay = gr.Slider( minimum=0.0, maximum=0.5, value=0.05, step=0.01, label="Visualization Delay (seconds)" ) # Clear button clear_btn = gr.Button("Clear Conversation") # Hidden textbox to potentially store intermediate response (might not be needed) # current_response = gr.Textbox(visible=False) # --- Event Handlers --- # Helper to add message to history state def add_message_to_history(history, message, response): history = history.copy() # Modify copy history.append([message, response]) return history # Function when user submits message (Enter or Send button) def user_message_submitted(message, history): print(f"User submitted: '{message}'") if not message or not message.strip(): print("Empty message submitted, doing nothing.") # Return unchanged state if message is empty # Need to return values for all outputs of the .submit/.click return history, history, "", [] # history, chatbot_ui, user_input, output_vis # Add user message to history (with None for bot response initially) history = add_message_to_history(history, message, None) # Prepare updated history for display in Chatbot UI history_for_display = history.copy() # Clear the input textbox message_out = "" # Clear the visualization vis_clear = [] # Return updated history state, chatbot display, cleared input, cleared visualization return history, history_for_display, message_out, vis_clear # Function to generate bot response (triggered after user message is processed) def bot_response_generator( history, gen_length, steps, constraints_text, delay, temperature, top_p, alg, alg_temp ): print("--- Generating Bot Response ---") if not history or history[-1][1] is not None: print("History empty or last message already has response. Skipping generation.") # Yield current state if called unnecessarily yield history, [], "No response generated." return # Get the conversation history in the format the model expects messages = format_chat_history(history) # Includes the latest user query # Parse constraints from the textbox parsed_constraints = parse_constraints(constraints_text) try: # Generate response with visualization vis_states, response_text = dream_generate_response_with_visualization( messages, gen_length=gen_length, steps=steps, constraints=parsed_constraints, temperature=temperature, top_p=top_p, alg=alg, alg_temp=alg_temp ) # Update the history state with the final bot response history[-1][1] = response_text.strip() # Yield the initial visualization state immediately if vis_states: yield history, vis_states[0] # Update chatbot, update visualization else: # Handle case where generation failed before first state yield history, [("Generation failed.", "red")] # Then animate through the rest of the visualization states for state in vis_states[1:]: time.sleep(delay) yield history, state # Update chatbot (implicitly via history), update visualization except Exception as e: print(f"Error in bot_response_generator: {e}") import traceback traceback.print_exc() error_msg = f"Error: {str(e)}" # Show error in visualization error_vis = [(error_msg, "red")] # Update history with error message? Optional. # history[-1][1] = error_msg yield history, error_vis # Function to clear everything def clear_conversation(): print("Clearing conversation.") return [], [], "", [] # chat_history, chatbot_ui, user_input, output_vis # --- Wire UI elements to functions --- # Typing in Textbox and pressing Enter user_input.submit( fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], # Update history state, chatbot display, clear input, clear vis queue=False # Process immediately ).then( fn=bot_response_generator, inputs=[ chat_history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp ], outputs=[chatbot_ui, output_vis] # Update chatbot display (with new response), update visualization # Note: history state is updated implicitly by bot_response_generator modifying its input ) # Clicking the Send button send_btn.click( fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False ).then( fn=bot_response_generator, inputs=[ chat_history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp ], outputs=[chatbot_ui, output_vis] ) # Clicking the Clear button clear_btn.click( fn=clear_conversation, inputs=[], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False ) return demo # --- Launch the Gradio App --- if __name__ == "__main__": print("Creating Gradio demo...") demo = create_chatbot_demo() print("Launching Gradio demo...") # Use queue for potentially long generation times # share=True generates a public link (useful for Colab/Spaces) demo.queue().launch(share=True, debug=True) # Add debug=True for more logs