Spaces:
Running
on
Zero
Running
on
Zero
# dream_app.py (Updated) | |
import torch | |
import numpy as np | |
import gradio as gr | |
import spaces | |
# import torch.nn.functional as F # Not needed for DREAM's basic visualization | |
from transformers import AutoTokenizer, AutoModel | |
import time | |
import re # Keep for parsing constraints | |
# Use try-except for space deployment vs local | |
try: | |
# Used for spaces deployment with GPU | |
gpu_check = spaces.GPU | |
print("Running in Gradio Spaces with GPU environment.") | |
except AttributeError: | |
# Fallback for local execution or environments without spaces.GPU | |
print("Running in local environment or without spaces.GPU.") | |
# Define a dummy decorator if spaces.GPU is not available | |
def gpu_check(func): | |
return func | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"Using device: {device}") | |
# --- Load DREAM Model and Tokenizer --- | |
model_path = "Dream-org/Dream-v0-Instruct-7B" | |
print(f"Loading model: {model_path}") | |
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
print("Model and tokenizer loaded.") | |
# --- Constants for DREAM --- | |
if tokenizer.mask_token is None: | |
print("Warning: Mask token not found in tokenizer. Attempting to add '[MASK]'.") | |
tokenizer.add_special_tokens({'mask_token': '[MASK]'}) | |
model.resize_token_embeddings(len(tokenizer)) # Important if vocab size changed | |
if tokenizer.mask_token is None or tokenizer.mask_token_id is None: | |
raise ValueError("Could not set or find ID for a mask token for the tokenizer.") | |
MASK_TOKEN = tokenizer.mask_token | |
MASK_ID = tokenizer.mask_token_id | |
EOS_TOKEN = tokenizer.eos_token # Get EOS token string | |
EOS_ID = tokenizer.eos_token_id # Get EOS token ID | |
# Add other special tokens if needed for visualization | |
SPECIAL_TOKENS_MAP = { | |
tokenizer.eos_token_id: "[EOS]", | |
tokenizer.bos_token_id: "[BOS]", | |
tokenizer.pad_token_id: "[PAD]", | |
tokenizer.unk_token_id: "[UNK]", | |
MASK_ID: MASK_TOKEN # Map mask ID back to its string representation | |
} | |
# Add None key to handle cases where token IDs might be None (shouldn't happen with tensors) | |
SPECIAL_TOKENS_MAP[None] = "[NONE]" | |
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}") | |
print(f"Using EOS_TOKEN='{EOS_TOKEN}' with ID={EOS_ID}") | |
# --- Helper Functions (Constraint Parsing, History Formatting) --- | |
def parse_constraints(constraints_text): | |
"""Parse constraints in format: 'position:word, position:word, ...'""" | |
constraints = {} | |
if not constraints_text: | |
return constraints | |
parts = constraints_text.split(',') | |
for part in parts: | |
part = part.strip() # Trim whitespace | |
if ':' not in part: | |
continue | |
try: | |
pos_str, word = part.split(':', 1) | |
pos = int(pos_str.strip()) | |
word = word.strip() | |
# Allow empty words if needed, but usually we want a word | |
if word and pos >= 0: | |
constraints[pos] = word | |
except ValueError: | |
print(f"Warning: Could not parse constraint part: '{part}'") | |
continue | |
return constraints | |
def format_chat_history(history): | |
""" | |
Format chat history for the DREAM model (standard messages format) | |
Args: | |
history: List of [user_message, assistant_message] pairs | |
Returns: | |
Formatted conversation for the model (list of dictionaries) | |
""" | |
messages = [] | |
# Add system prompt if desired (check DREAM examples/recommendations) | |
# messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional | |
for user_msg, assistant_msg in history: | |
if user_msg: # Handle potential None message if clearing failed | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: # Skip if None (for the latest user message awaiting response) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
return messages | |
# --- Core Generation Logic for DREAM with Visualization --- | |
# Use the potentially dummy decorator | |
def dream_generate_response_with_visualization( | |
messages, | |
gen_length=64, | |
steps=64, # Default based on DREAM examples | |
constraints=None, | |
temperature=0.6, # Default based on DREAM examples | |
top_p=0.95, # Default based on DREAM examples | |
alg="entropy", # Default based on DREAM examples | |
alg_temp=0.0, # Default based on DREAM examples | |
): | |
""" | |
Generate text with DREAM model with visualization using the generation hook. | |
Args: | |
messages: List of message dictionaries with 'role' and 'content' | |
gen_length: Length of text to generate (max_new_tokens) | |
steps: Number of diffusion steps | |
constraints: Dictionary mapping positions (relative to response start) to words | |
temperature: Sampling temperature | |
top_p: Nucleus sampling p | |
alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy') | |
alg_temp: Temperature for confidence-based algorithms | |
Returns: | |
Tuple: (List of visualization states, final generated text string) | |
""" | |
print("--- Starting DREAM Generation ---") | |
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}") | |
print(f"Constraints: {constraints}") | |
# --- Input Preparation --- | |
if constraints is None: | |
constraints = {} | |
# Convert word constraints to token IDs (handle multi-token words) | |
processed_constraints = {} | |
print("Processing constraints:") | |
for pos, word in constraints.items(): | |
# Prepend space for consistent tokenization, similar to LLaDA example | |
# Important: use add_special_tokens=False for constraints | |
tokens = tokenizer.encode(" " + word, add_special_tokens=False) | |
if not tokens: | |
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.") | |
continue | |
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}") | |
for i, token_id in enumerate(tokens): | |
# Ensure we don't overwrite parts of multi-token constraints accidentally | |
if pos + i not in processed_constraints: | |
processed_constraints[pos + i] = token_id | |
else: | |
print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.") | |
# Prepare the prompt using chat template | |
try: | |
inputs = tokenizer.apply_chat_template( | |
messages, | |
return_tensors="pt", | |
return_dict=True, | |
add_generation_prompt=True # Crucial for instruction-tuned models like Dream-Instruct | |
) | |
input_ids = inputs.input_ids.to(device=device) | |
attention_mask = inputs.attention_mask.to(device=device) # Get attention mask | |
prompt_length = input_ids.shape[1] | |
print(f"Input prompt length: {prompt_length}") | |
# print(f"Input IDs: {input_ids}") # Keep commented unless debugging | |
except Exception as e: | |
print(f"Error applying chat template: {e}") | |
return [([("Error applying chat template.", "Error")],)], f"Error: {e}" | |
if prompt_length + gen_length > 2048: # Check context length (DREAM uses 2048) | |
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.") | |
gen_length = 2048 - prompt_length | |
if gen_length <= 0: | |
print("Error: Prompt is already too long.") | |
return [([("Prompt too long.", "Error")],)], "Error: Prompt too long." | |
# --- State for Visualization Hook --- | |
visualization_states = [] | |
last_x = None # Store the sequence from the previous step | |
# Initial state: Prompt + all masks | |
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device) | |
# Apply initial constraints to the masked part *before* showing the first state | |
for pos, token_id in processed_constraints.items(): | |
absolute_pos = pos # Position relative to start of generation | |
if 0 <= absolute_pos < gen_length: | |
# Check if the constraint token itself is special | |
if token_id in SPECIAL_TOKENS_MAP: | |
print(f" Note: Constraint at pos {pos} is a special token: {SPECIAL_TOKENS_MAP[token_id]}") | |
initial_x_part[0, absolute_pos] = token_id | |
# --- Define the Hook Function --- | |
# This function will be called at each diffusion step | |
def generation_tokens_hook_func(step, x, logits): | |
nonlocal last_x, visualization_states # Allow modification of outer scope variables | |
# print(f"Hook called for step {step}") # Keep commented unless debugging | |
current_x = x.clone() # Work on a copy for comparison/modification | |
# 1. Apply Constraints *before* generating visualization for this step | |
# Constraints are relative to the start of the *generated* part | |
constrained_x = current_x.clone() | |
current_prompt_len = current_x.shape[1] - gen_length # Recalculate actual prompt length | |
if current_prompt_len < 0: | |
print("Warning: prompt_len negative in hook, skipping constraints/vis.") | |
return current_x # Return unmodified if something is wrong | |
for pos, token_id in processed_constraints.items(): | |
absolute_pos = current_prompt_len + pos | |
if current_prompt_len <= absolute_pos < current_x.shape[1]: | |
# Apply constraint if the current token doesn't match | |
if constrained_x[0, absolute_pos] != token_id: | |
constrained_x[0, absolute_pos] = token_id | |
# print(f" Constraint applied at pos {pos} ({absolute_pos}) -> token {token_id}") | |
# 2. Generate Visualization State for *this* step | |
# Compare current_x (output of diffusion for this step, before constraints applied *in this call*) | |
# with last_x (state from *previous* hook call / initial state, *after* constraints were applied then) | |
current_state_vis = [] | |
gen_part_current = current_x[0, current_prompt_len:] | |
gen_part_last = last_x[0, current_prompt_len:] if last_x is not None else None | |
for i in range(gen_length): | |
current_token_id = gen_part_current[i].item() | |
last_token_id = gen_part_last[i].item() if gen_part_last is not None else MASK_ID # Assume mask initially | |
# Determine display string - Handle special tokens explicitly | |
if current_token_id in SPECIAL_TOKENS_MAP: | |
display_token = SPECIAL_TOKENS_MAP[current_token_id] | |
else: | |
# Decode non-special tokens, skipping special tokens in the *output string* | |
# and stripping whitespace | |
display_token = tokenizer.decode([current_token_id], | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True).strip() | |
# If decoding results in empty string for a non-special token, use a space perhaps | |
if not display_token: | |
display_token = " " # Use a single space as placeholder | |
# Determine category (label) for color mapping | |
category = "Old" # Default assume it was revealed before | |
is_constrained = i in processed_constraints | |
if current_token_id == MASK_ID: | |
category = "Mask" | |
elif is_constrained and processed_constraints[i] == current_token_id: | |
# Check if it was *just* constrained or already was correct | |
# We mark as 'Constraint' if it matches the required token, regardless of when it appeared | |
category = "Constraint" | |
elif last_token_id == MASK_ID and current_token_id != MASK_ID: | |
# It was a mask before, now it's not -> Newly revealed | |
# (Unless it's a constraint, handled above) | |
category = "New" | |
# else: category remains "Old" | |
current_state_vis.append((display_token, category)) | |
visualization_states.append(current_state_vis) | |
# 3. Update last_x for the *next* step's comparison | |
# Store the state *after* applying constraints for accurate comparison next time | |
last_x = constrained_x.clone() | |
# 4. Return the sequence with constraints applied for the model's next step | |
return constrained_x # Return the sequence with constraints enforced | |
# --- Run DREAM Generation --- | |
try: | |
print("Calling model.diffusion_generate...") | |
# Make sure last_x is initialized correctly before the first hook call | |
# It should represent the state *before* the first diffusion step. | |
# Create the initial full sequence (prompt + initial masked/constrained part) | |
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1) | |
last_x = initial_full_x.clone() # Initialize last_x with the state before step 0 | |
# Add the very first visualization state (prompt + initial masks/constraints) | |
# This state corresponds to the `last_x` *before* the first hook call. | |
initial_state_vis = [] | |
initial_gen_part = initial_full_x[0, prompt_length:] | |
for i in range(gen_length): | |
token_id = initial_gen_part[i].item() | |
category = "Mask" | |
display_token = MASK_TOKEN | |
if token_id != MASK_ID: | |
# This must be an initial constraint | |
category = "Constraint" | |
if token_id in SPECIAL_TOKENS_MAP: | |
display_token = SPECIAL_TOKENS_MAP[token_id] | |
else: | |
display_token = tokenizer.decode([token_id], skip_special_tokens=True).strip() | |
if not display_token: display_token = " " # Placeholder | |
initial_state_vis.append((display_token, category)) | |
visualization_states.append(initial_state_vis) | |
output = model.diffusion_generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=gen_length, | |
output_history=False, # We build history in the hook | |
return_dict_in_generate=True, | |
steps=steps, | |
temperature=temperature, | |
top_p=top_p, | |
alg=alg, | |
alg_temp=alg_temp if alg != "origin" else 0.0, # alg_temp only for confidence algs | |
generation_tokens_hook_func=generation_tokens_hook_func | |
) | |
print("model.diffusion_generate finished.") | |
# Extract final generated sequence (response part only) | |
final_sequence = output.sequences[0] | |
response_token_ids = final_sequence[prompt_length:] | |
# Decode the final response, skipping special tokens for the final output text | |
final_text = tokenizer.decode( | |
response_token_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True | |
).strip() | |
print(f"Final generated text: {final_text}") | |
# The hook should have added the last state, no need for safeguard typically | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
import traceback | |
traceback.print_exc() | |
# Add error message to visualization using the "Error" category | |
error_msg = f"Error during generation: {str(e)}" | |
visualization_states.append([("Error", "Error")]) # Use 'Error' category | |
final_text = f"Generation failed: {e}" | |
print("--- DREAM Generation Finished ---") | |
# Return states list (already built by hook) and final text | |
return visualization_states, final_text | |
# --- Gradio UI Setup --- | |
css = ''' | |
/* Hide the default legend */ | |
.gradio-container .output-markdown table { display: none !important; } | |
.small_btn { | |
max-width: 100px; /* Adjust as needed */ | |
min-width: 60px; /* Ensure button doesn't collapse */ | |
height: 40px; /* Adjust as needed */ | |
flex-grow: 0 !important; /* Prevent button from growing */ | |
margin-left: 5px !important; /* Add some space */ | |
margin-top: auto; /* Align button bottom with textbox */ | |
margin-bottom: auto; /* Align button bottom with textbox */ | |
line-height: 1; /* Adjust line height if text vertical align is off */ | |
padding: 0 10px; /* Adjust padding */ | |
} | |
.chat-input-row { | |
display: flex; | |
align-items: center; /* Vertically align items */ | |
margin-bottom: 10px; /* Add space below input row */ | |
} | |
.chat-input-row > * { | |
margin-right: 5px; /* Space between textbox and button */ | |
} | |
.chat-input-row > *:last-child { | |
margin-right: 0; | |
} | |
/* Style HighlightedText elements */ | |
.token-hl span { | |
padding: 2px 1px; /* Minimal padding */ | |
margin: 0 1px; /* Minimal margin */ | |
border-radius: 3px; | |
display: inline-block; /* Ensure background covers token */ | |
line-height: 1.2; /* Adjust for better vertical spacing */ | |
} | |
/* Custom legend styling */ | |
.custom-legend span { | |
display: inline-block; | |
margin-right: 15px; | |
font-size: 0.9em; | |
} | |
.custom-legend span::before { | |
content: "■"; | |
margin-right: 4px; | |
font-size: 1.1em; /* Make square slightly larger */ | |
vertical-align: middle; /* Align square with text */ | |
} | |
''' | |
# Define color map mapping CATEGORY names to colors | |
color_map = { | |
"Mask": "#A0A0A0", # Darker Gray for masks | |
"New": "#77DD77", # Light Green for new tokens | |
"Old": "#AEC6CF", # Light Blue/Gray for old tokens | |
"Constraint": "#C3A0E0", # Purple for constraints | |
"Error": "#FF6961" # Light Red for errors | |
} | |
# Create the custom legend HTML string | |
legend_html = "<div class='custom-legend'>" | |
for category, color in color_map.items(): | |
legend_html += f"<span style='color:{color};'>{category}</span>" | |
legend_html += "</div>" | |
def create_chatbot_demo(): | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo") | |
gr.Markdown("A demonstration of the Dream 7B diffusion-based language model. Watch the text generate step-by-step.") | |
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)") | |
# STATE MANAGEMENT | |
chat_history = gr.State([]) | |
# UI COMPONENTS | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot_ui = gr.Chatbot( | |
label="Conversation", | |
height=500, | |
bubble_full_width=False | |
) | |
# Message input Row | |
with gr.Row(elem_classes="chat-input-row"): | |
user_input = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here and press Enter...", | |
scale=4, | |
container=False, | |
show_label=False | |
) | |
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn") | |
constraints_input = gr.Textbox( | |
label="Word Constraints (Optional)", | |
info="Force specific words at positions (0-indexed from response start). Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'", | |
placeholder="e.g., 0:Hello, 6:world", | |
value="" | |
) | |
with gr.Column(scale=2): | |
output_vis = gr.HighlightedText( | |
label="Denoising Process Visualization", | |
combine_adjacent=False, # Keep tokens separate | |
show_legend=True, # Hide default legend table | |
#color_map=color_map, # Provide the color map | |
#elem_classes="token-hl" # Add class for token styling | |
) | |
# Use Markdown to display the custom legend | |
gr.Markdown(legend_html) | |
# Advanced generation settings | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
gen_length = gr.Slider( | |
minimum=16, maximum=512, value=128, step=8, | |
label="Max New Tokens" | |
) | |
steps = gr.Slider( | |
minimum=8, maximum=512, value=128, step=8, | |
label="Diffusion Steps" | |
) | |
with gr.Row(): | |
temperature = gr.Slider( | |
minimum=0.0, maximum=1.5, value=0.6, step=0.05, | |
label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.95, step=0.05, | |
label="Top-P (Nucleus Sampling)" | |
) | |
with gr.Row(): | |
remasking_strategy = gr.Radio( | |
choices=[ | |
("Random", "origin"), | |
("Entropy", "entropy"), | |
("MaskGit+", "maskgit_plus"), | |
("TopK Margin", "topk_margin"), | |
], | |
value="entropy", | |
label="Generation Order Strategy (alg)" | |
) | |
alg_temp = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.1, step=0.05, | |
label="Order Randomness (alg_temp)" , | |
info="Adds randomness to non-Random strategies. Ignored for Random." | |
) | |
with gr.Row(): | |
visualization_delay = gr.Slider( | |
minimum=0.0, maximum=0.5, value=0.05, step=0.01, | |
label="Visualization Delay (seconds)" | |
) | |
# Clear button | |
clear_btn = gr.Button("Clear Conversation") | |
# --- Event Handlers --- | |
# Helper to add message to history state | |
def add_message_to_history(history, message, response): | |
history = history.copy() # Modify copy | |
history.append([message, response]) | |
return history | |
# Function when user submits message (Enter or Send button) | |
def user_message_submitted(message, history): | |
print(f"User submitted: '{message}'") | |
if not message or not message.strip(): | |
print("Empty message submitted, doing nothing.") | |
return history, history, "", [] # history, chatbot_ui, user_input, output_vis | |
history = add_message_to_history(history, message, None) | |
history_for_display = history.copy() | |
message_out = "" | |
vis_clear = [] # Clear visualization when new message submitted | |
return history, history_for_display, message_out, vis_clear | |
# Function to generate bot response (triggered after user message is processed) | |
def bot_response_generator( | |
history, gen_length, steps, constraints_text, delay, | |
temperature, top_p, alg, alg_temp | |
): | |
print("--- Generating Bot Response ---") | |
if not history or history[-1][1] is not None: | |
print("History empty or last message already has response. Skipping generation.") | |
yield history, [], "No response generated." # Yield current state if called unnecessarily | |
return | |
messages = format_chat_history(history) | |
parsed_constraints = parse_constraints(constraints_text) | |
try: | |
vis_states, response_text = dream_generate_response_with_visualization( | |
messages, | |
gen_length=gen_length, | |
steps=steps, | |
constraints=parsed_constraints, | |
temperature=temperature, | |
top_p=top_p, | |
alg=alg, | |
alg_temp=alg_temp | |
) | |
# Update the history state only ONCE with the final bot response | |
final_history = history.copy() # Create copy to modify | |
final_history[-1][1] = response_text.strip() # Update the last element | |
# Yield visualization states one by one | |
# Important: Yield the *original* history for all intermediate steps, | |
# only yield the final_history with the *last* visualization state. | |
num_states = len(vis_states) | |
for i, state in enumerate(vis_states): | |
current_chatbot_state = history if i < num_states - 1 else final_history | |
yield current_chatbot_state, state | |
if delay > 0 and i < num_states - 1: # Don't sleep after last state | |
time.sleep(delay) | |
except Exception as e: | |
print(f"Error in bot_response_generator: {e}") | |
import traceback | |
traceback.print_exc() | |
error_msg = f"Error: {str(e)}" | |
error_vis = [(error_msg, "Error")] # Use Error category | |
# Update history with error message? Optional. | |
final_history_error = history.copy() | |
final_history_error[-1][1] = error_msg # Add error to chatbot too | |
yield final_history_error, error_vis | |
# Function to clear everything | |
def clear_conversation(): | |
print("Clearing conversation.") | |
return [], [], "", [] # chat_history, chatbot_ui, user_input, output_vis | |
# --- Wire UI elements to functions --- | |
# Typing in Textbox and pressing Enter | |
submit_event = user_input.submit( | |
fn=user_message_submitted, | |
inputs=[user_input, chat_history], | |
outputs=[chat_history, chatbot_ui, user_input, output_vis], | |
queue=False # Show user message immediately | |
) | |
# Clicking the Send button | |
click_event = send_btn.click( | |
fn=user_message_submitted, | |
inputs=[user_input, chat_history], | |
outputs=[chat_history, chatbot_ui, user_input, output_vis], | |
queue=False | |
) | |
# Chain the generation after user message is processed (for both submit and click) | |
# Use .then() to trigger the generator | |
generation_inputs = [ | |
chat_history, gen_length, steps, constraints_input, visualization_delay, | |
temperature, top_p, remasking_strategy, alg_temp | |
] | |
generation_outputs = [chatbot_ui, output_vis] | |
submit_event.then( | |
fn=bot_response_generator, | |
inputs=generation_inputs, | |
outputs=generation_outputs | |
) | |
click_event.then( | |
fn=bot_response_generator, | |
inputs=generation_inputs, | |
outputs=generation_outputs | |
) | |
# Clicking the Clear button | |
clear_btn.click( | |
fn=clear_conversation, | |
inputs=[], | |
outputs=[chat_history, chatbot_ui, user_input, output_vis], | |
queue=False | |
) | |
return demo | |
# --- Launch the Gradio App --- | |
if __name__ == "__main__": | |
print("Creating Gradio demo...") | |
demo = create_chatbot_demo() | |
print("Launching Gradio demo...") | |
# Use queue for potentially long generation times | |
# share=True generates a public link (useful for Colab/Spaces) | |
demo.queue().launch(share=True, debug=True) # Add debug=True for more logs |