Dream / app.py
multimodalart's picture
Update app.py
b861a35 verified
raw
history blame
27.6 kB
# dream_app.py (Updated)
import torch
import numpy as np
import gradio as gr
import spaces
# import torch.nn.functional as F # Not needed for DREAM's basic visualization
from transformers import AutoTokenizer, AutoModel
import time
import re # Keep for parsing constraints
# Use try-except for space deployment vs local
try:
# Used for spaces deployment with GPU
gpu_check = spaces.GPU
print("Running in Gradio Spaces with GPU environment.")
except AttributeError:
# Fallback for local execution or environments without spaces.GPU
print("Running in local environment or without spaces.GPU.")
# Define a dummy decorator if spaces.GPU is not available
def gpu_check(func):
return func
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# --- Load DREAM Model and Tokenizer ---
model_path = "Dream-org/Dream-v0-Instruct-7B"
print(f"Loading model: {model_path}")
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Model and tokenizer loaded.")
# --- Constants for DREAM ---
if tokenizer.mask_token is None:
print("Warning: Mask token not found in tokenizer. Attempting to add '[MASK]'.")
tokenizer.add_special_tokens({'mask_token': '[MASK]'})
model.resize_token_embeddings(len(tokenizer)) # Important if vocab size changed
if tokenizer.mask_token is None or tokenizer.mask_token_id is None:
raise ValueError("Could not set or find ID for a mask token for the tokenizer.")
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
EOS_TOKEN = tokenizer.eos_token # Get EOS token string
EOS_ID = tokenizer.eos_token_id # Get EOS token ID
# Add other special tokens if needed for visualization
SPECIAL_TOKENS_MAP = {
tokenizer.eos_token_id: "[EOS]",
tokenizer.bos_token_id: "[BOS]",
tokenizer.pad_token_id: "[PAD]",
tokenizer.unk_token_id: "[UNK]",
MASK_ID: MASK_TOKEN # Map mask ID back to its string representation
}
# Add None key to handle cases where token IDs might be None (shouldn't happen with tensors)
SPECIAL_TOKENS_MAP[None] = "[NONE]"
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
print(f"Using EOS_TOKEN='{EOS_TOKEN}' with ID={EOS_ID}")
# --- Helper Functions (Constraint Parsing, History Formatting) ---
def parse_constraints(constraints_text):
"""Parse constraints in format: 'position:word, position:word, ...'"""
constraints = {}
if not constraints_text:
return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip() # Trim whitespace
if ':' not in part:
continue
try:
pos_str, word = part.split(':', 1)
pos = int(pos_str.strip())
word = word.strip()
# Allow empty words if needed, but usually we want a word
if word and pos >= 0:
constraints[pos] = word
except ValueError:
print(f"Warning: Could not parse constraint part: '{part}'")
continue
return constraints
def format_chat_history(history):
"""
Format chat history for the DREAM model (standard messages format)
Args:
history: List of [user_message, assistant_message] pairs
Returns:
Formatted conversation for the model (list of dictionaries)
"""
messages = []
# Add system prompt if desired (check DREAM examples/recommendations)
# messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional
for user_msg, assistant_msg in history:
if user_msg: # Handle potential None message if clearing failed
messages.append({"role": "user", "content": user_msg})
if assistant_msg: # Skip if None (for the latest user message awaiting response)
messages.append({"role": "assistant", "content": assistant_msg})
return messages
# --- Core Generation Logic for DREAM with Visualization ---
@gpu_check # Use the potentially dummy decorator
def dream_generate_response_with_visualization(
messages,
gen_length=64,
steps=64, # Default based on DREAM examples
constraints=None,
temperature=0.6, # Default based on DREAM examples
top_p=0.95, # Default based on DREAM examples
alg="entropy", # Default based on DREAM examples
alg_temp=0.0, # Default based on DREAM examples
):
"""
Generate text with DREAM model with visualization using the generation hook.
Args:
messages: List of message dictionaries with 'role' and 'content'
gen_length: Length of text to generate (max_new_tokens)
steps: Number of diffusion steps
constraints: Dictionary mapping positions (relative to response start) to words
temperature: Sampling temperature
top_p: Nucleus sampling p
alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy')
alg_temp: Temperature for confidence-based algorithms
Returns:
Tuple: (List of visualization states, final generated text string)
"""
print("--- Starting DREAM Generation ---")
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
print(f"Constraints: {constraints}")
# --- Input Preparation ---
if constraints is None:
constraints = {}
# Convert word constraints to token IDs (handle multi-token words)
processed_constraints = {}
print("Processing constraints:")
for pos, word in constraints.items():
# Prepend space for consistent tokenization, similar to LLaDA example
# Important: use add_special_tokens=False for constraints
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
if not tokens:
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
continue
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}")
for i, token_id in enumerate(tokens):
# Ensure we don't overwrite parts of multi-token constraints accidentally
if pos + i not in processed_constraints:
processed_constraints[pos + i] = token_id
else:
print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.")
# Prepare the prompt using chat template
try:
inputs = tokenizer.apply_chat_template(
messages,
return_tensors="pt",
return_dict=True,
add_generation_prompt=True # Crucial for instruction-tuned models like Dream-Instruct
)
input_ids = inputs.input_ids.to(device=device)
attention_mask = inputs.attention_mask.to(device=device) # Get attention mask
prompt_length = input_ids.shape[1]
print(f"Input prompt length: {prompt_length}")
# print(f"Input IDs: {input_ids}") # Keep commented unless debugging
except Exception as e:
print(f"Error applying chat template: {e}")
return [([("Error applying chat template.", "Error")],)], f"Error: {e}"
if prompt_length + gen_length > 2048: # Check context length (DREAM uses 2048)
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
gen_length = 2048 - prompt_length
if gen_length <= 0:
print("Error: Prompt is already too long.")
return [([("Prompt too long.", "Error")],)], "Error: Prompt too long."
# --- State for Visualization Hook ---
visualization_states = []
last_x = None # Store the sequence from the previous step
# Initial state: Prompt + all masks
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
# Apply initial constraints to the masked part *before* showing the first state
for pos, token_id in processed_constraints.items():
absolute_pos = pos # Position relative to start of generation
if 0 <= absolute_pos < gen_length:
# Check if the constraint token itself is special
if token_id in SPECIAL_TOKENS_MAP:
print(f" Note: Constraint at pos {pos} is a special token: {SPECIAL_TOKENS_MAP[token_id]}")
initial_x_part[0, absolute_pos] = token_id
# --- Define the Hook Function ---
# This function will be called at each diffusion step
def generation_tokens_hook_func(step, x, logits):
nonlocal last_x, visualization_states # Allow modification of outer scope variables
# print(f"Hook called for step {step}") # Keep commented unless debugging
current_x = x.clone() # Work on a copy for comparison/modification
# 1. Apply Constraints *before* generating visualization for this step
# Constraints are relative to the start of the *generated* part
constrained_x = current_x.clone()
current_prompt_len = current_x.shape[1] - gen_length # Recalculate actual prompt length
if current_prompt_len < 0:
print("Warning: prompt_len negative in hook, skipping constraints/vis.")
return current_x # Return unmodified if something is wrong
for pos, token_id in processed_constraints.items():
absolute_pos = current_prompt_len + pos
if current_prompt_len <= absolute_pos < current_x.shape[1]:
# Apply constraint if the current token doesn't match
if constrained_x[0, absolute_pos] != token_id:
constrained_x[0, absolute_pos] = token_id
# print(f" Constraint applied at pos {pos} ({absolute_pos}) -> token {token_id}")
# 2. Generate Visualization State for *this* step
# Compare current_x (output of diffusion for this step, before constraints applied *in this call*)
# with last_x (state from *previous* hook call / initial state, *after* constraints were applied then)
current_state_vis = []
gen_part_current = current_x[0, current_prompt_len:]
gen_part_last = last_x[0, current_prompt_len:] if last_x is not None else None
for i in range(gen_length):
current_token_id = gen_part_current[i].item()
last_token_id = gen_part_last[i].item() if gen_part_last is not None else MASK_ID # Assume mask initially
# Determine display string - Handle special tokens explicitly
if current_token_id in SPECIAL_TOKENS_MAP:
display_token = SPECIAL_TOKENS_MAP[current_token_id]
else:
# Decode non-special tokens, skipping special tokens in the *output string*
# and stripping whitespace
display_token = tokenizer.decode([current_token_id],
skip_special_tokens=True,
clean_up_tokenization_spaces=True).strip()
# If decoding results in empty string for a non-special token, use a space perhaps
if not display_token:
display_token = " " # Use a single space as placeholder
# Determine category (label) for color mapping
category = "Old" # Default assume it was revealed before
is_constrained = i in processed_constraints
if current_token_id == MASK_ID:
category = "Mask"
elif is_constrained and processed_constraints[i] == current_token_id:
# Check if it was *just* constrained or already was correct
# We mark as 'Constraint' if it matches the required token, regardless of when it appeared
category = "Constraint"
elif last_token_id == MASK_ID and current_token_id != MASK_ID:
# It was a mask before, now it's not -> Newly revealed
# (Unless it's a constraint, handled above)
category = "New"
# else: category remains "Old"
current_state_vis.append((display_token, category))
visualization_states.append(current_state_vis)
# 3. Update last_x for the *next* step's comparison
# Store the state *after* applying constraints for accurate comparison next time
last_x = constrained_x.clone()
# 4. Return the sequence with constraints applied for the model's next step
return constrained_x # Return the sequence with constraints enforced
# --- Run DREAM Generation ---
try:
print("Calling model.diffusion_generate...")
# Make sure last_x is initialized correctly before the first hook call
# It should represent the state *before* the first diffusion step.
# Create the initial full sequence (prompt + initial masked/constrained part)
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
last_x = initial_full_x.clone() # Initialize last_x with the state before step 0
# Add the very first visualization state (prompt + initial masks/constraints)
# This state corresponds to the `last_x` *before* the first hook call.
initial_state_vis = []
initial_gen_part = initial_full_x[0, prompt_length:]
for i in range(gen_length):
token_id = initial_gen_part[i].item()
category = "Mask"
display_token = MASK_TOKEN
if token_id != MASK_ID:
# This must be an initial constraint
category = "Constraint"
if token_id in SPECIAL_TOKENS_MAP:
display_token = SPECIAL_TOKENS_MAP[token_id]
else:
display_token = tokenizer.decode([token_id], skip_special_tokens=True).strip()
if not display_token: display_token = " " # Placeholder
initial_state_vis.append((display_token, category))
visualization_states.append(initial_state_vis)
output = model.diffusion_generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=gen_length,
output_history=False, # We build history in the hook
return_dict_in_generate=True,
steps=steps,
temperature=temperature,
top_p=top_p,
alg=alg,
alg_temp=alg_temp if alg != "origin" else 0.0, # alg_temp only for confidence algs
generation_tokens_hook_func=generation_tokens_hook_func
)
print("model.diffusion_generate finished.")
# Extract final generated sequence (response part only)
final_sequence = output.sequences[0]
response_token_ids = final_sequence[prompt_length:]
# Decode the final response, skipping special tokens for the final output text
final_text = tokenizer.decode(
response_token_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
print(f"Final generated text: {final_text}")
# The hook should have added the last state, no need for safeguard typically
except Exception as e:
print(f"Error during generation: {e}")
import traceback
traceback.print_exc()
# Add error message to visualization using the "Error" category
error_msg = f"Error during generation: {str(e)}"
visualization_states.append([("Error", "Error")]) # Use 'Error' category
final_text = f"Generation failed: {e}"
print("--- DREAM Generation Finished ---")
# Return states list (already built by hook) and final text
return visualization_states, final_text
# --- Gradio UI Setup ---
css = '''
/* Hide the default legend */
.gradio-container .output-markdown table { display: none !important; }
.small_btn {
max-width: 100px; /* Adjust as needed */
min-width: 60px; /* Ensure button doesn't collapse */
height: 40px; /* Adjust as needed */
flex-grow: 0 !important; /* Prevent button from growing */
margin-left: 5px !important; /* Add some space */
margin-top: auto; /* Align button bottom with textbox */
margin-bottom: auto; /* Align button bottom with textbox */
line-height: 1; /* Adjust line height if text vertical align is off */
padding: 0 10px; /* Adjust padding */
}
.chat-input-row {
display: flex;
align-items: center; /* Vertically align items */
margin-bottom: 10px; /* Add space below input row */
}
.chat-input-row > * {
margin-right: 5px; /* Space between textbox and button */
}
.chat-input-row > *:last-child {
margin-right: 0;
}
/* Style HighlightedText elements */
.token-hl span {
padding: 2px 1px; /* Minimal padding */
margin: 0 1px; /* Minimal margin */
border-radius: 3px;
display: inline-block; /* Ensure background covers token */
line-height: 1.2; /* Adjust for better vertical spacing */
}
/* Custom legend styling */
.custom-legend span {
display: inline-block;
margin-right: 15px;
font-size: 0.9em;
}
.custom-legend span::before {
content: "■";
margin-right: 4px;
font-size: 1.1em; /* Make square slightly larger */
vertical-align: middle; /* Align square with text */
}
'''
# Define color map mapping CATEGORY names to colors
color_map = {
"Mask": "#A0A0A0", # Darker Gray for masks
"New": "#77DD77", # Light Green for new tokens
"Old": "#AEC6CF", # Light Blue/Gray for old tokens
"Constraint": "#C3A0E0", # Purple for constraints
"Error": "#FF6961" # Light Red for errors
}
# Create the custom legend HTML string
legend_html = "<div class='custom-legend'>"
for category, color in color_map.items():
legend_html += f"<span style='color:{color};'>{category}</span>"
legend_html += "</div>"
def create_chatbot_demo():
with gr.Blocks(css=css) as demo:
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
gr.Markdown("A demonstration of the Dream 7B diffusion-based language model. Watch the text generate step-by-step.")
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)")
# STATE MANAGEMENT
chat_history = gr.State([])
# UI COMPONENTS
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(
label="Conversation",
height=500,
bubble_full_width=False
)
# Message input Row
with gr.Row(elem_classes="chat-input-row"):
user_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here and press Enter...",
scale=4,
container=False,
show_label=False
)
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn")
constraints_input = gr.Textbox(
label="Word Constraints (Optional)",
info="Force specific words at positions (0-indexed from response start). Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'",
placeholder="e.g., 0:Hello, 6:world",
value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=False, # Keep tokens separate
show_legend=True, # Hide default legend table
#color_map=color_map, # Provide the color map
#elem_classes="token-hl" # Add class for token styling
)
# Use Markdown to display the custom legend
gr.Markdown(legend_html)
# Advanced generation settings
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
gen_length = gr.Slider(
minimum=16, maximum=512, value=128, step=8,
label="Max New Tokens"
)
steps = gr.Slider(
minimum=8, maximum=512, value=128, step=8,
label="Diffusion Steps"
)
with gr.Row():
temperature = gr.Slider(
minimum=0.0, maximum=1.5, value=0.6, step=0.05,
label="Temperature"
)
top_p = gr.Slider(
minimum=0.0, maximum=1.0, value=0.95, step=0.05,
label="Top-P (Nucleus Sampling)"
)
with gr.Row():
remasking_strategy = gr.Radio(
choices=[
("Random", "origin"),
("Entropy", "entropy"),
("MaskGit+", "maskgit_plus"),
("TopK Margin", "topk_margin"),
],
value="entropy",
label="Generation Order Strategy (alg)"
)
alg_temp = gr.Slider(
minimum=0.0, maximum=1.0, value=0.1, step=0.05,
label="Order Randomness (alg_temp)" ,
info="Adds randomness to non-Random strategies. Ignored for Random."
)
with gr.Row():
visualization_delay = gr.Slider(
minimum=0.0, maximum=0.5, value=0.05, step=0.01,
label="Visualization Delay (seconds)"
)
# Clear button
clear_btn = gr.Button("Clear Conversation")
# --- Event Handlers ---
# Helper to add message to history state
def add_message_to_history(history, message, response):
history = history.copy() # Modify copy
history.append([message, response])
return history
# Function when user submits message (Enter or Send button)
def user_message_submitted(message, history):
print(f"User submitted: '{message}'")
if not message or not message.strip():
print("Empty message submitted, doing nothing.")
return history, history, "", [] # history, chatbot_ui, user_input, output_vis
history = add_message_to_history(history, message, None)
history_for_display = history.copy()
message_out = ""
vis_clear = [] # Clear visualization when new message submitted
return history, history_for_display, message_out, vis_clear
# Function to generate bot response (triggered after user message is processed)
def bot_response_generator(
history, gen_length, steps, constraints_text, delay,
temperature, top_p, alg, alg_temp
):
print("--- Generating Bot Response ---")
if not history or history[-1][1] is not None:
print("History empty or last message already has response. Skipping generation.")
yield history, [], "No response generated." # Yield current state if called unnecessarily
return
messages = format_chat_history(history)
parsed_constraints = parse_constraints(constraints_text)
try:
vis_states, response_text = dream_generate_response_with_visualization(
messages,
gen_length=gen_length,
steps=steps,
constraints=parsed_constraints,
temperature=temperature,
top_p=top_p,
alg=alg,
alg_temp=alg_temp
)
# Update the history state only ONCE with the final bot response
final_history = history.copy() # Create copy to modify
final_history[-1][1] = response_text.strip() # Update the last element
# Yield visualization states one by one
# Important: Yield the *original* history for all intermediate steps,
# only yield the final_history with the *last* visualization state.
num_states = len(vis_states)
for i, state in enumerate(vis_states):
current_chatbot_state = history if i < num_states - 1 else final_history
yield current_chatbot_state, state
if delay > 0 and i < num_states - 1: # Don't sleep after last state
time.sleep(delay)
except Exception as e:
print(f"Error in bot_response_generator: {e}")
import traceback
traceback.print_exc()
error_msg = f"Error: {str(e)}"
error_vis = [(error_msg, "Error")] # Use Error category
# Update history with error message? Optional.
final_history_error = history.copy()
final_history_error[-1][1] = error_msg # Add error to chatbot too
yield final_history_error, error_vis
# Function to clear everything
def clear_conversation():
print("Clearing conversation.")
return [], [], "", [] # chat_history, chatbot_ui, user_input, output_vis
# --- Wire UI elements to functions ---
# Typing in Textbox and pressing Enter
submit_event = user_input.submit(
fn=user_message_submitted,
inputs=[user_input, chat_history],
outputs=[chat_history, chatbot_ui, user_input, output_vis],
queue=False # Show user message immediately
)
# Clicking the Send button
click_event = send_btn.click(
fn=user_message_submitted,
inputs=[user_input, chat_history],
outputs=[chat_history, chatbot_ui, user_input, output_vis],
queue=False
)
# Chain the generation after user message is processed (for both submit and click)
# Use .then() to trigger the generator
generation_inputs = [
chat_history, gen_length, steps, constraints_input, visualization_delay,
temperature, top_p, remasking_strategy, alg_temp
]
generation_outputs = [chatbot_ui, output_vis]
submit_event.then(
fn=bot_response_generator,
inputs=generation_inputs,
outputs=generation_outputs
)
click_event.then(
fn=bot_response_generator,
inputs=generation_inputs,
outputs=generation_outputs
)
# Clicking the Clear button
clear_btn.click(
fn=clear_conversation,
inputs=[],
outputs=[chat_history, chatbot_ui, user_input, output_vis],
queue=False
)
return demo
# --- Launch the Gradio App ---
if __name__ == "__main__":
print("Creating Gradio demo...")
demo = create_chatbot_demo()
print("Launching Gradio demo...")
# Use queue for potentially long generation times
# share=True generates a public link (useful for Colab/Spaces)
demo.queue().launch(share=True, debug=True) # Add debug=True for more logs