Spaces:
Running
on
Zero
Running
on
Zero
# dream_app.py | |
import torch | |
import numpy as np | |
import gradio as gr | |
import spaces # Ensure spaces is installed if needed for GPU decorator | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel, AutoConfig | |
import time | |
import re | |
from typing import List, Dict, Tuple, Optional | |
import torch.distributions as dists # Added import | |
import traceback # For printing exceptions | |
# --- START: Copied Helper functions from generation_utils.py --- | |
# These are needed because we are reimplementing the sampling loop locally. | |
def top_p_logits(logits, top_p=None): | |
""" Applies top-p filtering to logits. """ | |
if top_p is None or top_p >= 1.0: | |
return logits | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device) | |
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove) | |
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min) | |
return logits | |
def top_k_logits(logits, top_k=None): | |
""" Applies top-k filtering to logits. """ | |
if top_k is None or top_k <= 0: | |
return logits | |
top_k = min(top_k, logits.size(-1)) # Safety check | |
if top_k == logits.size(-1): # Avoid unnecessary computation if k is full size | |
return logits | |
# Remove all tokens with a probability less than the last token of the top-k | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min) | |
return logits | |
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False): | |
""" Samples tokens based on logits and calculates confidence. """ | |
if temperature > 0: | |
# Prevent division by zero or negative temperatures | |
safe_temp = max(temperature, 1e-6) | |
logits = logits / safe_temp | |
if top_p is not None and 0.0 < top_p < 1.0: # Apply top_p if valid (and not disabled) | |
logits = top_p_logits(logits, top_p) | |
if top_k is not None and top_k > 0: # Apply top_k if valid | |
logits = top_k_logits(logits, top_k) | |
# Ensure logits are not all -inf after filtering, if so, assign uniform probability. | |
is_all_neg_inf = torch.all(logits <= torch.finfo(logits.dtype).min, dim=-1, keepdim=True) | |
if torch.any(is_all_neg_inf): | |
# print("Warning: All logits became -inf after filtering. Assigning uniform probabilities.") | |
uniform_logits = torch.zeros_like(logits) # Uniform logits (zeros before softmax) | |
logits = torch.where(is_all_neg_inf, uniform_logits, logits) | |
probs = torch.softmax(logits, dim=-1) | |
# Clamp probabilities to avoid NaNs in sampling, ensure they sum to 1 | |
probs = torch.clamp(probs, min=0.0) # Ensure non-negative | |
prob_sum_for_norm = probs.sum(dim=-1, keepdim=True) | |
# Use a tolerance check for division | |
safe_prob_sum_for_norm = torch.where(prob_sum_for_norm > 1e-12, prob_sum_for_norm, torch.ones_like(prob_sum_for_norm)) | |
probs = probs / safe_prob_sum_for_norm # Re-normalize with safe denominator | |
probs = torch.nan_to_num(probs, nan=0.0) # Handle any remaining NaNs | |
if temperature > 0: | |
try: | |
# Ensure probs sum to 1 before sampling | |
probs_sum_check = probs.sum(dim=-1) | |
if not torch.all(torch.isclose(probs_sum_check, torch.ones_like(probs_sum_check))): | |
# print(f"Warning: Probs do not sum to 1 before sampling ({probs_sum_check}). Re-normalizing.") | |
probs = probs / probs.sum(dim=-1, keepdim=True) # Final normalization attempt | |
x0 = dists.Categorical(probs=probs).sample() | |
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1) | |
except Exception as e: # Catch broader exceptions during sampling | |
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.") | |
confidence, x0 = probs.max(dim=-1) | |
else: # Greedy decoding (temperature == 0) | |
confidence, x0 = probs.max(dim=-1) | |
if margin_confidence: | |
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True) | |
# Ensure there are at least 2 probabilities to compare | |
top1_probs = sorted_probs[..., 0] | |
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else torch.zeros_like(top1_probs) # Use 0 if only one prob | |
confidence = top1_probs - top2_probs | |
if neg_entropy: | |
epsilon = torch.finfo(probs.dtype).eps # Use dtype's epsilon | |
# Ensure probs are > 0 for log | |
log_probs = torch.log(torch.clamp(probs, min=epsilon)) # Clamp before log | |
confidence = torch.sum(probs * log_probs, dim=-1) # This is negative entropy | |
# Ensure confidence is not NaN | |
confidence = torch.nan_to_num(confidence, nan=0.0) | |
return confidence, x0 | |
# --- END: Copied Helper functions --- | |
# --- Model Loading and Constants --- | |
# Load model configuration to get special token IDs | |
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True) | |
# Use AutoModel for the base model loading, relying on trust_remote_code=True | |
# for the custom DreamModel class and generation mixin. | |
model_path = "Dream-org/Dream-v0-Instruct-7B" | |
# Determine device | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"Using device: {device}") | |
# Load model and tokenizer | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
print("Loading model...") | |
# Ensure torch_dtype is set appropriately for your hardware if needed | |
model = AutoModel.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, # Use bfloat16 only on CUDA | |
trust_remote_code=True, | |
attn_implementation="sdpa" # Explicitly request SDPA if available/desired | |
) | |
model = model.to(device).eval() | |
print("Model loaded.") | |
# Constants from Dream's config/tokenizer | |
MASK_TOKEN = tokenizer.mask_token | |
MASK_ID = tokenizer.mask_token_id # Use tokenizer's mask_token_id directly | |
PAD_ID = tokenizer.pad_token_id # Use tokenizer's pad_token_id | |
EOS_ID = tokenizer.eos_token_id # Use tokenizer's eos_token_id | |
if MASK_ID is None: | |
print("Warning: Mask token ID not found in config/tokenizer. Trying to fetch from tokenizer...") | |
mask_token_special = tokenizer.mask_token | |
if mask_token_special: | |
MASK_ID = tokenizer.convert_tokens_to_ids(mask_token_special) | |
print(f"Found MASK_ID from tokenizer: {MASK_ID}") | |
else: | |
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.") | |
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID} | |
try: | |
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>") | |
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>") | |
if IM_START_ID is not None: SPECIAL_TOKEN_IDS.add(IM_START_ID) | |
if IM_END_ID is not None: SPECIAL_TOKEN_IDS.add(IM_END_ID) | |
except KeyError: | |
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.") | |
IM_START_ID = None | |
IM_END_ID = None | |
# --- App Helper Functions --- | |
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]: | |
""" Parses constraints. """ | |
constraints = {} | |
if not constraints_text: | |
return constraints | |
# Simple split on comma, assumes format 'pos:word, pos:word' | |
parts = constraints_text.split(',') | |
for part in parts: | |
part = part.strip() | |
if ':' not in part: | |
continue | |
pos_str, word = part.split(':', 1) | |
try: | |
pos = int(pos_str.strip()) | |
word = word.strip() | |
token_ids = [] | |
if word: # Only encode if word is not empty | |
# Add space prefix automatically if pos > 0 and word doesn't start with space | |
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word | |
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False) | |
if token_ids and pos >= 0: | |
constraints[pos] = token_ids | |
elif not token_ids and word: # Don't warn for empty words after split | |
print(f"Warning: Could not tokenize constraint word '{word}'") | |
except ValueError: | |
print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'") | |
continue # Ignore malformed constraint parts | |
except Exception as e: | |
print(f"Warning: Error processing constraint '{part}': {e}") | |
continue | |
# print(f"Parsed constraints: {constraints}") # Debugging | |
return constraints | |
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]: | |
""" Formats chat history for the template. """ | |
messages = [] | |
for user_msg, assistant_msg in history: | |
if user_msg is not None: # Check for None explicitly | |
messages.append({"role": "user", "content": user_msg}) | |
# Add assistant message only if it exists (it won't for the last turn before generation) | |
if assistant_msg is not None: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
return messages | |
def apply_constraints_to_state( | |
x: torch.Tensor, | |
prompt_length: int, | |
total_length: int, | |
parsed_constraints: Dict[int, List[int]], | |
current_step: Optional[int] = None # For logging/debugging | |
) -> torch.Tensor: | |
""" Applies constraints directly to the state tensor `x`. """ | |
modified_x = x.clone() # Work on a copy | |
for rel_pos, word_token_ids in parsed_constraints.items(): | |
abs_start_pos = prompt_length + rel_pos | |
abs_end_pos = abs_start_pos + len(word_token_ids) | |
# Ensure the constraint fits within the generation length | |
if abs_start_pos < total_length and abs_end_pos <= total_length: | |
try: | |
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device) | |
# Force the constraint tokens onto the sequence | |
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor | |
except IndexError: | |
print(f"Warning (Step {current_step}): Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.") | |
except Exception as e: | |
print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}") | |
return modified_x | |
# --- Core Generation Logic with Live Visualization --- | |
# Decorator for Hugging Face Spaces GPU usage | |
# Ensure no gradients are computed during generation | |
def generate_dream_response( | |
history: List[List[Optional[str]]], # Receives the list from _chat_history_store | |
gen_length: int, | |
steps: int, | |
constraints_text: str, | |
temperature: float, | |
top_p: Optional[float], | |
top_k: Optional[int], | |
alg: str, | |
alg_temp: Optional[float], | |
visualization_delay: float | |
) -> List[Tuple[str, str]]: | |
""" Generates text step-by-step and yields visualization states live. """ | |
# No history_copy needed, work directly on the input 'history' list | |
# which is a reference to the value in _chat_history_store | |
if not history or not history[-1][0]: | |
# Yield the original history back if there's no input | |
yield history, [("No input message found.", "red")], "" | |
return | |
# --- 1. Preparation --- | |
last_user_message = history[-1][0] | |
messages_for_template = format_chat_history(history) | |
parsed_constraints = parse_constraints(constraints_text) | |
try: | |
inputs = tokenizer.apply_chat_template( | |
messages_for_template, | |
return_tensors="pt", | |
return_dict=True, | |
add_generation_prompt=True | |
) | |
input_ids = inputs.input_ids.to(device) | |
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids) | |
prompt_length = input_ids.shape[1] | |
except Exception as e: | |
print(f"Error applying chat template: {e}") | |
yield history, [("Error preparing input.", "red")], "" | |
return | |
eps = 1e-3 | |
top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None | |
top_k_val = top_k if top_k is not None and top_k > 0 else None | |
alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None | |
# --- 2. Initialize Generation State --- | |
total_length = prompt_length + gen_length | |
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device) | |
x = torch.cat((input_ids, initial_generation_part), dim=1) | |
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device) | |
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1) | |
attention_mask_for_model = full_attention_mask_long.to(model.dtype) | |
large_neg_val = torch.finfo(model.dtype).min | |
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val | |
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) | |
timesteps = torch.linspace(1, eps, steps + 1, device=device) | |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1) | |
# --- 3. Visualization Setup --- | |
previous_tokens_vis = None | |
final_response_text = "" | |
# history_copy removed | |
# --- 4. Initial Yield (Masked State) --- | |
initial_generated_tokens = x[0, prompt_length:].cpu() | |
vis_data_initial = [] | |
for tok_id in initial_generated_tokens.tolist(): | |
display_token = MASK_TOKEN | |
color = "#444444" | |
vis_data_initial.append((display_token, color)) | |
previous_tokens_vis = initial_generated_tokens | |
# Yield the current state of the history (which has None for the bot response) | |
yield history, vis_data_initial, "" | |
time.sleep(visualization_delay) | |
# --- 5. Step-by-Step Diffusion Loop --- | |
try: | |
start_time = time.time() | |
for i in range(steps): | |
mask_index = (x == MASK_ID) | |
if not mask_index.any(): | |
print(f"No mask tokens left at step {i}. Stopping early.") | |
break | |
# --- Model Forward Pass --- | |
outputs = model( | |
input_ids=x, | |
attention_mask=attention_mask_for_model, | |
position_ids=None, | |
use_cache=False, | |
return_dict=True | |
) | |
logits = outputs.logits | |
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits | |
mask_logits = logits[mask_index] | |
if mask_logits.numel() == 0: | |
print(f"No masked tokens found for logit selection at step {i}. Stopping.") | |
break | |
# --- Sampling / Remasking Logic --- | |
t = timesteps[i] | |
s = timesteps[i + 1] | |
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long) | |
# [Keep sampling logic identical to previous correct version] | |
if alg == 'origin': | |
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0 | |
num_masked = mask_logits.shape[0] | |
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer | |
logits_to_sample = mask_logits[transfer_indices_relative] | |
if logits_to_sample.numel() > 0: | |
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val) | |
x_new_masked_part[transfer_indices_relative] = sampled_tokens | |
else: # Confidence-based algorithms | |
use_margin = (alg == 'topk_margin') | |
use_entropy = (alg == 'entropy') | |
confidence, x0_candidates = sample_tokens( | |
mask_logits, | |
temperature=temperature, | |
top_p=top_p_val, | |
top_k=top_k_val, | |
margin_confidence=use_margin, | |
neg_entropy=use_entropy | |
) | |
num_mask_token = mask_logits.shape[0] | |
target_num_revealed_float = num_mask_token * (1.0 - s / t) | |
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token | |
if number_transfer_tokens > 0: | |
num_samples = min(number_transfer_tokens, num_mask_token) | |
if num_samples > 0: | |
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Initialize | |
if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence | |
sort_metric = confidence if alg != 'entropy' else -confidence | |
k_topk = min(num_samples, sort_metric.numel()) | |
if k_topk > 0: | |
_, transfer_indices_relative = torch.topk(sort_metric, k=k_topk) | |
else: # Sample based on confidence temperature | |
if confidence.numel() > 0: | |
conf_probs = confidence / alg_temp_val | |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9) | |
conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30) | |
conf_probs = F.softmax(conf_probs, dim=-1) | |
conf_probs = torch.clamp(conf_probs, min=0.0) | |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0) | |
prob_sum = conf_probs.sum() | |
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype) | |
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0: | |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype)) | |
conf_probs = conf_probs / safe_prob_sum | |
final_prob_sum_check = conf_probs.sum() | |
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4): | |
try: | |
transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False) | |
except RuntimeError as e: | |
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.") | |
sort_metric = confidence if alg != 'entropy' else -confidence | |
k_multinomial_fallback = min(num_samples, sort_metric.numel()) | |
if k_multinomial_fallback > 0: | |
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback) | |
else: | |
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.") | |
sort_metric = confidence if alg != 'entropy' else -confidence | |
k_multinomial_fallback = min(num_samples, sort_metric.numel()) | |
if k_multinomial_fallback > 0: | |
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback) | |
# else: # No confidence values to sample from, transfer_indices_relative remains empty | |
# Apply the transfer | |
if transfer_indices_relative.numel() > 0: | |
valid_indices = transfer_indices_relative < x0_candidates.shape[0] | |
valid_transfer_indices = transfer_indices_relative[valid_indices] | |
if valid_transfer_indices.numel() > 0: | |
if valid_transfer_indices.max() < x_new_masked_part.shape[0]: | |
x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone() | |
else: | |
print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.") | |
# --- End Sampling Logic --- | |
x[mask_index] = x_new_masked_part | |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i) | |
# --- Yield Visualization --- | |
current_generated_tokens = x[0, prompt_length:].cpu() | |
vis_data = [] | |
# [Keep visualization formatting logic the same] | |
for j in range(gen_length): | |
current_tok_id = current_generated_tokens[j].item() | |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID | |
try: | |
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False) | |
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token | |
except Exception: display_token = f"[ID:{current_tok_id}]" | |
color = None; token_to_display = display_token | |
if current_tok_id == MASK_ID: color = "#444444" | |
elif previous_tok_id == MASK_ID: color = "#66CC66" | |
else: color = "#6699CC" | |
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \ | |
(EOS_ID is not None and current_tok_id == EOS_ID) | |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None | |
if token_to_display: vis_data.append((token_to_display, color)) | |
# --- End Vis Formatting --- | |
previous_tokens_vis = current_generated_tokens | |
intermediate_response_tokens = x[0, prompt_length:] | |
intermediate_response_text = tokenizer.decode( | |
intermediate_response_tokens, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True | |
).strip() | |
# Yield the current state of the history list (bot response still None) | |
yield history, vis_data, intermediate_response_text | |
time.sleep(visualization_delay) | |
# --- End Loop --- | |
end_time = time.time() | |
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.") | |
# --- 6. Final Processing & Yield --- | |
final_sequence = x[0] | |
response_tokens = final_sequence[prompt_length:] | |
final_response_text = tokenizer.decode( | |
response_tokens, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True | |
).strip() | |
# --- CRITICAL FIX: Update history IN PLACE before final yield --- | |
if history: # Ensure history is not empty | |
history[-1][1] = final_response_text | |
# Now the list referenced by _chat_history_store is updated. | |
final_generated_tokens = x[0, prompt_length:].cpu() | |
vis_data_final = [] | |
# [Keep final visualization formatting logic the same] | |
for j in range(gen_length): | |
current_tok_id = final_generated_tokens[j].item() | |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID | |
try: | |
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False) | |
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token | |
except Exception: display_token = f"[ID:{current_tok_id}]" | |
color = None; token_to_display = display_token | |
if current_tok_id == MASK_ID: color = "#444444" | |
elif previous_tok_id == MASK_ID: color = "#66CC66" | |
else: color = "#6699CC" | |
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \ | |
(EOS_ID is not None and current_tok_id == EOS_ID) | |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None | |
if token_to_display: vis_data_final.append((token_to_display, color)) | |
# --- End Final Vis Formatting --- | |
# Yield the FINAL updated history list | |
yield history, vis_data_final, final_response_text | |
print("Visualization streaming complete.") | |
except Exception as e: | |
print(f"Error during generation or processing: {e}") | |
import traceback | |
traceback.print_exc() | |
# Yield the history state as it was when the error occurred | |
yield history, [("Error during generation.", "red")], "" | |
return | |
# --- Gradio UI --- | |
css = ''' | |
.category-legend{display:none} | |
button{min-height: 60px} | |
''' | |
def create_chatbot_demo(): | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo") | |
gr.Markdown( | |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] " | |
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]" # Note: Link might be hypothetical | |
) | |
# STATE MANAGEMENT | |
_chat_history_store = gr.State([]) # Hidden state to store actual history list | |
# UI COMPONENTS | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot_ui = gr.Chatbot( | |
label="Conversation", | |
height=500, | |
show_copy_button=True, | |
bubble_full_width=False, | |
) | |
with gr.Group(): | |
with gr.Row(): | |
user_input = gr.Textbox( | |
label="Your Message", | |
placeholder="Type your message here...", | |
scale=7, | |
autofocus=True, | |
show_label=False, | |
container=False | |
) | |
send_btn = gr.Button("Send", scale=1, variant="primary") | |
constraints_input = gr.Textbox( | |
label="Word Constraints (Optional)", | |
info="Place words at specific positions (0-indexed from start of generation). Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'", | |
placeholder="0:Hello, 10:world", | |
value="" | |
) | |
with gr.Column(scale=2): | |
output_vis = gr.HighlightedText( | |
label="Denoising Process Visualization", | |
combine_adjacent=False, | |
show_legend=True, | |
interactive=False, | |
) | |
response_text_display = gr.Textbox( | |
label="Generated Response", | |
interactive=False, | |
lines=5 | |
) | |
# Advanced generation settings | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens") | |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps") | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)") | |
alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)") | |
with gr.Row(): | |
# Adjusted label for clarity on disabling top_p | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (>0 & <1 to enable)") | |
top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (>0 to enable)") | |
with gr.Row(): | |
remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)") | |
with gr.Row(): | |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)") | |
# Clear button | |
clear_btn = gr.Button("Clear Conversation") | |
# --- Event Handlers --- | |
def add_user_message_to_history(message: str, history_store: List[List[Optional[str]]]): | |
"""Adds user message TO STATE, clears input, prepares for bot response.""" | |
if not message.strip(): | |
gr.Warning("Please enter a message.") | |
# Return unchanged state, but clear inputs/outputs for next step | |
# Outputs: _chat_history_store, user_input, output_vis, response_text_display | |
return history_store, message, [], "" # Return original message to keep it in input if invalid | |
# Add user message with placeholder for bot response TO THE STATE | |
history_store.append([message.strip(), None]) # Ensure message is stripped | |
# Return updated history store, clear input box, clear vis, clear response text | |
# Outputs: _chat_history_store, user_input, output_vis, response_text_display | |
return history_store, "", [], "" # Clear user_input only on success | |
def clear_conversation(): | |
"""Clears the chat history state and UI elements.""" | |
# Outputs: _chat_history_store, chatbot_ui, user_input, output_vis, response_text_display | |
return [], [], "", [], "" # Clear everything | |
# --- Connect UI elements --- | |
# Inputs for the generation function | |
generation_inputs = [ | |
_chat_history_store, gen_length, steps, constraints_input, | |
temperature, top_p, top_k, remasking_strategy, alg_temp, | |
visualization_delay | |
] | |
# Outputs for the generation function (yields history, vis_data, text) | |
generation_outputs = [chatbot_ui, output_vis, response_text_display] | |
# Outputs for add_user_message_to_history | |
add_message_outputs = [ | |
_chat_history_store, # Update state | |
user_input, # Clear input (or return original if invalid) | |
output_vis, # Clear visualization | |
response_text_display # Clear response text | |
] | |
# Handle Textbox Submission (Enter key) | |
submit_listener = user_input.submit( | |
fn=add_user_message_to_history, | |
inputs=[user_input, _chat_history_store], | |
outputs=add_message_outputs, # Step 1: Update state, clear inputs/vis/response | |
queue=True # Ensure intermediate steps are processed | |
).then( | |
fn=generate_dream_response, | |
inputs=generation_inputs, # Takes the updated state | |
outputs=generation_outputs, # Step 2: Generate response and stream history/vis/text to UI | |
show_progress="hidden", # Hide default progress as we have live vis | |
queue=True # Ensure generation runs in the queue | |
) | |
# Handle Send Button Click | |
click_listener = send_btn.click( | |
fn=add_user_message_to_history, | |
inputs=[user_input, _chat_history_store], | |
outputs=add_message_outputs, # Step 1: Update state, clear inputs/vis/response | |
queue=True # Ensure intermediate steps are processed | |
).then( | |
fn=generate_dream_response, | |
inputs=generation_inputs, # Takes the updated state | |
outputs=generation_outputs, # Step 2: Generate response and stream history/vis/text to UI | |
show_progress="hidden", # Hide default progress as we have live vis | |
queue=True # Ensure generation runs in the queue | |
) | |
# Clear Button Action | |
clear_btn.click( | |
clear_conversation, | |
inputs=[], | |
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display], | |
queue=False # Clearing can be immediate | |
) | |
return demo | |
# --- Launch --- | |
if __name__ == "__main__": | |
demo = create_chatbot_demo() | |
# Use queue for handling multiple users and streaming | |
demo.queue().launch(debug=True, share=False) # Set share=True for public link |