multimodalart's picture
Upload 2025 files
22a452a verified
import contextlib
import io
import re
import unittest
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AnimateDiffPipeline,
AnimateDiffVideoToVideoPipeline,
AutoencoderKL,
DDIMScheduler,
MotionAdapter,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.pipelines.pipeline_loading_utils import is_safetensors_compatible, variant_compatible_siblings
from diffusers.utils.testing_utils import require_torch_accelerator, torch_device
class IsSafetensorsCompatibleTests(unittest.TestCase):
def test_all_is_compatible(self):
filenames = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_diffusers_model_is_compatible(self):
filenames = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_diffusers_model_is_not_compatible(self):
filenames = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
"unet/diffusion_pytorch_model.bin",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_transformer_model_is_compatible(self):
filenames = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_transformer_model_is_not_compatible(self):
filenames = [
"safety_checker/pytorch_model.bin",
"safety_checker/model.safetensors",
"vae/diffusion_pytorch_model.bin",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/pytorch_model.bin",
# Removed: 'text_encoder/model.safetensors',
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_all_is_compatible_variant(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_diffusers_model_is_compatible_variant(self):
filenames = [
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_diffusers_model_is_compatible_variant_mixed(self):
filenames = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_diffusers_model_is_not_compatible_variant(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
"unet/diffusion_pytorch_model.fp16.bin",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_transformer_model_is_compatible_variant(self):
filenames = [
"text_encoder/pytorch_model.fp16.bin",
"text_encoder/model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_transformer_model_is_not_compatible_variant(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_transformer_model_is_compatible_variant_extra_folder(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames, folder_names={"vae", "unet"}))
self.assertTrue(is_safetensors_compatible(filenames, folder_names={"vae", "unet"}, variant="fp16"))
def test_transformer_model_is_not_compatible_variant_extra_folder(self):
filenames = [
"safety_checker/pytorch_model.fp16.bin",
"safety_checker/model.fp16.safetensors",
"vae/diffusion_pytorch_model.fp16.bin",
"vae/diffusion_pytorch_model.fp16.safetensors",
"text_encoder/pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.bin",
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames, folder_names={"text_encoder"}))
def test_transformers_is_compatible_sharded(self):
filenames = [
"text_encoder/pytorch_model.bin",
"text_encoder/model-00001-of-00002.safetensors",
"text_encoder/model-00002-of-00002.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_transformers_is_compatible_variant_sharded(self):
filenames = [
"text_encoder/pytorch_model.bin",
"text_encoder/model.fp16-00001-of-00002.safetensors",
"text_encoder/model.fp16-00001-of-00002.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_diffusers_is_compatible_sharded(self):
filenames = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model-00001-of-00002.safetensors",
"unet/diffusion_pytorch_model-00002-of-00002.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames))
def test_diffusers_is_compatible_variant_sharded(self):
filenames = [
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.fp16-00001-of-00002.safetensors",
"unet/diffusion_pytorch_model.fp16-00001-of-00002.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_diffusers_is_compatible_only_variants(self):
filenames = [
"unet/diffusion_pytorch_model.fp16.safetensors",
]
self.assertFalse(is_safetensors_compatible(filenames))
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_diffusers_is_compatible_no_components(self):
filenames = [
"diffusion_pytorch_model.bin",
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_diffusers_is_compatible_no_components_only_variants(self):
filenames = [
"diffusion_pytorch_model.fp16.bin",
]
self.assertFalse(is_safetensors_compatible(filenames))
def test_is_compatible_mixed_variants(self):
filenames = [
"unet/diffusion_pytorch_model.fp16.safetensors",
"vae/diffusion_pytorch_model.safetensors",
]
self.assertTrue(is_safetensors_compatible(filenames, variant="fp16"))
def test_is_compatible_variant_and_non_safetensors(self):
filenames = [
"unet/diffusion_pytorch_model.fp16.safetensors",
"vae/diffusion_pytorch_model.bin",
]
self.assertFalse(is_safetensors_compatible(filenames, variant="fp16"))
class VariantCompatibleSiblingsTest(unittest.TestCase):
def test_only_non_variants_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"vae/diffusion_pytorch_model.{variant}.safetensors",
"vae/diffusion_pytorch_model.safetensors",
f"text_encoder/model.{variant}.safetensors",
"text_encoder/model.safetensors",
f"unet/diffusion_pytorch_model.{variant}.safetensors",
"unet/diffusion_pytorch_model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert all(variant not in f for f in model_filenames)
def test_only_variants_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"vae/diffusion_pytorch_model.{variant}.safetensors",
"vae/diffusion_pytorch_model.safetensors",
f"text_encoder/model.{variant}.safetensors",
"text_encoder/model.safetensors",
f"unet/diffusion_pytorch_model.{variant}.safetensors",
"unet/diffusion_pytorch_model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
def test_mixed_variants_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
non_variant_file = "text_encoder/model.safetensors"
filenames = [
f"vae/diffusion_pytorch_model.{variant}.safetensors",
"vae/diffusion_pytorch_model.safetensors",
"text_encoder/model.safetensors",
f"unet/diffusion_pytorch_model.{variant}.safetensors",
"unet/diffusion_pytorch_model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f if f != non_variant_file else variant not in f for f in model_filenames)
def test_non_variants_in_main_dir_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"diffusion_pytorch_model.{variant}.safetensors",
"diffusion_pytorch_model.safetensors",
"model.safetensors",
f"model.{variant}.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert all(variant not in f for f in model_filenames)
def test_variants_in_main_dir_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"diffusion_pytorch_model.{variant}.safetensors",
"diffusion_pytorch_model.safetensors",
"model.safetensors",
f"model.{variant}.safetensors",
f"diffusion_pytorch_model.{variant}.safetensors",
"diffusion_pytorch_model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
def test_mixed_variants_in_main_dir_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
non_variant_file = "model.safetensors"
filenames = [
f"diffusion_pytorch_model.{variant}.safetensors",
"diffusion_pytorch_model.safetensors",
"model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f if f != non_variant_file else variant not in f for f in model_filenames)
def test_sharded_variants_in_main_dir_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
"diffusion_pytorch_model.safetensors.index.json",
"diffusion_pytorch_model-00001-of-00003.safetensors",
"diffusion_pytorch_model-00002-of-00003.safetensors",
"diffusion_pytorch_model-00003-of-00003.safetensors",
f"diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
f"diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
f"diffusion_pytorch_model.safetensors.index.{variant}.json",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
def test_mixed_sharded_and_variant_in_main_dir_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
"diffusion_pytorch_model.safetensors.index.json",
"diffusion_pytorch_model-00001-of-00003.safetensors",
"diffusion_pytorch_model-00002-of-00003.safetensors",
"diffusion_pytorch_model-00003-of-00003.safetensors",
f"diffusion_pytorch_model.{variant}.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
def test_mixed_sharded_non_variants_in_main_dir_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"diffusion_pytorch_model.safetensors.index.{variant}.json",
"diffusion_pytorch_model.safetensors.index.json",
"diffusion_pytorch_model-00001-of-00003.safetensors",
"diffusion_pytorch_model-00002-of-00003.safetensors",
"diffusion_pytorch_model-00003-of-00003.safetensors",
f"diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
f"diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert all(variant not in f for f in model_filenames)
def test_sharded_non_variants_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"unet/diffusion_pytorch_model.safetensors.index.{variant}.json",
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
f"unet/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
f"unet/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert all(variant not in f for f in model_filenames)
def test_sharded_variants_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"unet/diffusion_pytorch_model.safetensors.index.{variant}.json",
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
f"unet/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
f"unet/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
assert model_filenames == variant_filenames
def test_single_variant_with_sharded_non_variant_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
f"unet/diffusion_pytorch_model.{variant}.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
def test_mixed_single_variant_with_sharded_non_variant_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
allowed_non_variant = "unet"
filenames = [
"vae/diffusion_pytorch_model.safetensors.index.json",
"vae/diffusion_pytorch_model-00001-of-00003.safetensors",
"vae/diffusion_pytorch_model-00002-of-00003.safetensors",
"vae/diffusion_pytorch_model-00003-of-00003.safetensors",
f"vae/diffusion_pytorch_model.{variant}.safetensors",
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)
def test_sharded_mixed_variants_downloaded(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
allowed_non_variant = "unet"
filenames = [
f"vae/diffusion_pytorch_model.safetensors.index.{variant}.json",
"vae/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.safetensors",
f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.safetensors",
"vae/diffusion_pytorch_model-00001-of-00003.safetensors",
"vae/diffusion_pytorch_model-00002-of-00003.safetensors",
"vae/diffusion_pytorch_model-00003-of-00003.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)
def test_downloading_when_no_variant_exists(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = ["model.safetensors", "diffusion_pytorch_model.safetensors"]
with self.assertRaisesRegex(ValueError, "but no such modeling files are available. "):
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
def test_downloading_use_safetensors_false(self):
ignore_patterns = ["*.safetensors"]
filenames = [
"text_encoder/model.bin",
"unet/diffusion_pytorch_model.bin",
"unet/diffusion_pytorch_model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert all(".safetensors" not in f for f in model_filenames)
def test_non_variant_in_main_dir_with_variant_in_subfolder(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
allowed_non_variant = "diffusion_pytorch_model.safetensors"
filenames = [
f"unet/diffusion_pytorch_model.{variant}.safetensors",
"diffusion_pytorch_model.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)
def test_download_variants_when_component_has_no_safetensors_variant(self):
ignore_patterns = None
variant = "fp16"
filenames = [
f"unet/diffusion_pytorch_model.{variant}.bin",
"vae/diffusion_pytorch_model.safetensors",
f"vae/diffusion_pytorch_model.{variant}.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert {
f"unet/diffusion_pytorch_model.{variant}.bin",
f"vae/diffusion_pytorch_model.{variant}.safetensors",
} == model_filenames
def test_error_when_download_sharded_variants_when_component_has_no_safetensors_variant(self):
ignore_patterns = ["*.bin"]
variant = "fp16"
filenames = [
f"vae/diffusion_pytorch_model.bin.index.{variant}.json",
"vae/diffusion_pytorch_model.safetensors.index.json",
f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.bin",
"vae/diffusion_pytorch_model-00001-of-00003.safetensors",
"vae/diffusion_pytorch_model-00002-of-00003.safetensors",
"vae/diffusion_pytorch_model-00003-of-00003.safetensors",
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.bin",
]
with self.assertRaisesRegex(ValueError, "but no such modeling files are available. "):
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
def test_download_sharded_variants_when_component_has_no_safetensors_variant_and_safetensors_false(self):
ignore_patterns = ["*.safetensors"]
allowed_non_variant = "unet"
variant = "fp16"
filenames = [
f"vae/diffusion_pytorch_model.bin.index.{variant}.json",
"vae/diffusion_pytorch_model.safetensors.index.json",
f"vae/diffusion_pytorch_model.{variant}-00002-of-00002.bin",
"vae/diffusion_pytorch_model-00001-of-00003.safetensors",
"vae/diffusion_pytorch_model-00002-of-00003.safetensors",
"vae/diffusion_pytorch_model-00003-of-00003.safetensors",
"unet/diffusion_pytorch_model.safetensors.index.json",
"unet/diffusion_pytorch_model-00001-of-00003.safetensors",
"unet/diffusion_pytorch_model-00002-of-00003.safetensors",
"unet/diffusion_pytorch_model-00003-of-00003.safetensors",
f"vae/diffusion_pytorch_model.{variant}-00001-of-00002.bin",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f if allowed_non_variant not in f else variant not in f for f in model_filenames)
def test_download_sharded_legacy_variants(self):
ignore_patterns = None
variant = "fp16"
filenames = [
f"vae/transformer/diffusion_pytorch_model.safetensors.{variant}.index.json",
"vae/diffusion_pytorch_model.safetensors.index.json",
f"vae/diffusion_pytorch_model-00002-of-00002.{variant}.safetensors",
"vae/diffusion_pytorch_model-00001-of-00003.safetensors",
"vae/diffusion_pytorch_model-00002-of-00003.safetensors",
"vae/diffusion_pytorch_model-00003-of-00003.safetensors",
f"vae/diffusion_pytorch_model-00001-of-00002.{variant}.safetensors",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=variant, ignore_patterns=ignore_patterns
)
assert all(variant in f for f in model_filenames)
def test_download_onnx_models(self):
ignore_patterns = ["*.safetensors"]
filenames = [
"vae/model.onnx",
"unet/model.onnx",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert model_filenames == set(filenames)
def test_download_flax_models(self):
ignore_patterns = ["*.safetensors", "*.bin"]
filenames = [
"vae/diffusion_flax_model.msgpack",
"unet/diffusion_flax_model.msgpack",
]
model_filenames, variant_filenames = variant_compatible_siblings(
filenames, variant=None, ignore_patterns=ignore_patterns
)
assert model_filenames == set(filenames)
class ProgressBarTests(unittest.TestCase):
def get_dummy_components_image_generation(self):
cross_attention_dim = 8
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(4, 8),
layers_per_block=1,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=cross_attention_dim,
norm_num_groups=2,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[4, 8],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=cross_attention_dim,
intermediate_size=16,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"image_encoder": None,
}
return components
def get_dummy_components_video_generation(self):
cross_attention_dim = 8
block_out_channels = (8, 8)
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=block_out_channels,
layers_per_block=2,
sample_size=8,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=cross_attention_dim,
norm_num_groups=2,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="linear",
clip_sample=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=block_out_channels,
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=cross_attention_dim,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
motion_adapter = MotionAdapter(
block_out_channels=block_out_channels,
motion_layers_per_block=2,
motion_norm_num_groups=2,
motion_num_attention_heads=4,
)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"motion_adapter": motion_adapter,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"feature_extractor": None,
"image_encoder": None,
}
return components
def test_text_to_image(self):
components = self.get_dummy_components_image_generation()
pipe = StableDiffusionPipeline(**components)
pipe.to(torch_device)
inputs = {"prompt": "a cute cat", "num_inference_steps": 2}
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
stderr = stderr.getvalue()
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
# so we just match "5" in "#####| 1/5 [00:01<00:00]"
max_steps = re.search("/(.*?) ", stderr).group(1)
self.assertTrue(max_steps is not None and len(max_steps) > 0)
self.assertTrue(
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
)
pipe.set_progress_bar_config(disable=True)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
def test_image_to_image(self):
components = self.get_dummy_components_image_generation()
pipe = StableDiffusionImg2ImgPipeline(**components)
pipe.to(torch_device)
image = Image.new("RGB", (32, 32))
inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "strength": 0.5, "image": image}
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
stderr = stderr.getvalue()
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
# so we just match "5" in "#####| 1/5 [00:01<00:00]"
max_steps = re.search("/(.*?) ", stderr).group(1)
self.assertTrue(max_steps is not None and len(max_steps) > 0)
self.assertTrue(
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
)
pipe.set_progress_bar_config(disable=True)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
def test_inpainting(self):
components = self.get_dummy_components_image_generation()
pipe = StableDiffusionInpaintPipeline(**components)
pipe.to(torch_device)
image = Image.new("RGB", (32, 32))
mask = Image.new("RGB", (32, 32))
inputs = {
"prompt": "a cute cat",
"num_inference_steps": 2,
"strength": 0.5,
"image": image,
"mask_image": mask,
}
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
stderr = stderr.getvalue()
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
# so we just match "5" in "#####| 1/5 [00:01<00:00]"
max_steps = re.search("/(.*?) ", stderr).group(1)
self.assertTrue(max_steps is not None and len(max_steps) > 0)
self.assertTrue(
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
)
pipe.set_progress_bar_config(disable=True)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
def test_text_to_video(self):
components = self.get_dummy_components_video_generation()
pipe = AnimateDiffPipeline(**components)
pipe.to(torch_device)
inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "num_frames": 2}
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
stderr = stderr.getvalue()
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
# so we just match "5" in "#####| 1/5 [00:01<00:00]"
max_steps = re.search("/(.*?) ", stderr).group(1)
self.assertTrue(max_steps is not None and len(max_steps) > 0)
self.assertTrue(
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
)
pipe.set_progress_bar_config(disable=True)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
def test_video_to_video(self):
components = self.get_dummy_components_video_generation()
pipe = AnimateDiffVideoToVideoPipeline(**components)
pipe.to(torch_device)
num_frames = 2
video = [Image.new("RGB", (32, 32))] * num_frames
inputs = {"prompt": "a cute cat", "num_inference_steps": 2, "video": video}
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
stderr = stderr.getvalue()
# we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
# so we just match "5" in "#####| 1/5 [00:01<00:00]"
max_steps = re.search("/(.*?) ", stderr).group(1)
self.assertTrue(max_steps is not None and len(max_steps) > 0)
self.assertTrue(
f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
)
pipe.set_progress_bar_config(disable=True)
with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
_ = pipe(**inputs)
self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
@require_torch_accelerator
class PipelineDeviceAndDtypeStabilityTests(unittest.TestCase):
expected_pipe_device = torch.device(f"{torch_device}:0")
expected_pipe_dtype = torch.float64
def get_dummy_components_image_generation(self):
cross_attention_dim = 8
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(4, 8),
layers_per_block=1,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=cross_attention_dim,
norm_num_groups=2,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[4, 8],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=cross_attention_dim,
intermediate_size=16,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
"image_encoder": None,
}
return components
def test_deterministic_device(self):
components = self.get_dummy_components_image_generation()
pipe = StableDiffusionPipeline(**components)
pipe.to(device=torch_device, dtype=torch.float32)
pipe.unet.to(device="cpu")
pipe.vae.to(device=torch_device)
pipe.text_encoder.to(device=f"{torch_device}:0")
pipe_device = pipe.device
self.assertEqual(
self.expected_pipe_device,
pipe_device,
f"Wrong expected device. Expected {self.expected_pipe_device}. Got {pipe_device}.",
)
def test_deterministic_dtype(self):
components = self.get_dummy_components_image_generation()
pipe = StableDiffusionPipeline(**components)
pipe.to(device=torch_device, dtype=torch.float32)
pipe.unet.to(dtype=torch.float16)
pipe.vae.to(dtype=torch.float32)
pipe.text_encoder.to(dtype=torch.float64)
pipe_dtype = pipe.dtype
self.assertEqual(
self.expected_pipe_dtype,
pipe_dtype,
f"Wrong expected dtype. Expected {self.expected_pipe_dtype}. Got {pipe_dtype}.",
)