Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import math | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import torch | |
import torchvision.transforms.functional as FF | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import StableDiffusionLoraLoaderMixin | |
from diffusers.loaders.ip_adapter import IPAdapterMixin | |
from diffusers.loaders.lora_pipeline import LoraLoaderMixin | |
from diffusers.loaders.single_file import FromSingleFileMixin | |
from diffusers.loaders.textual_inversion import TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
is_torch_xla_available, | |
logging, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
try: | |
from compel import Compel | |
except ImportError: | |
Compel = None | |
KBASE = "ADDBASE" | |
KCOMM = "ADDCOMM" | |
KBRK = "BREAK" | |
class RegionalPromptingStableDiffusionPipeline( | |
DiffusionPipeline, | |
TextualInversionLoaderMixin, | |
LoraLoaderMixin, | |
IPAdapterMixin, | |
FromSingleFileMixin, | |
StableDiffusionLoraLoaderMixin, | |
): | |
r""" | |
Args for Regional Prompting Pipeline: | |
rp_args:dict | |
Required | |
rp_args["mode"]: cols, rows, prompt, prompt-ex | |
for cols, rows mode | |
rp_args["div"]: ex) 1;1;1(Divide into 3 regions) | |
for prompt, prompt-ex mode | |
rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode) | |
Optional | |
rp_args["save_mask"]: True/False (save masks in prompt mode) | |
rp_args["power"]: int (power for attention maps in prompt mode) | |
rp_args["base_ratio"]: | |
float (Sets the ratio of the base prompt) | |
ex) 0.2 (20%*BASE_PROMPT + 80%*REGION_PROMPT) | |
[Use base prompt](https://github.com/hako-mikan/sd-webui-regional-prompter?tab=readme-ov-file#use-base-prompt) | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
image_encoder: CLIPVisionModelWithProjection = None, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
image_encoder=image_encoder, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Initialize additional properties needed for DiffusionPipeline | |
self._num_timesteps = None | |
self._interrupt = False | |
self._guidance_scale = 7.5 | |
self._guidance_rescale = 0.0 | |
self._clip_skip = None | |
self._cross_attention_kwargs = None | |
def __call__( | |
self, | |
prompt: str, | |
height: int = 512, | |
width: int = 512, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: str = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
rp_args: Dict[str, str] = None, | |
): | |
active = KBRK in prompt[0] if isinstance(prompt, list) else KBRK in prompt | |
use_base = KBASE in prompt[0] if isinstance(prompt, list) else KBASE in prompt | |
if negative_prompt is None: | |
negative_prompt = "" if isinstance(prompt, str) else [""] * len(prompt) | |
device = self._execution_device | |
regions = 0 | |
self.base_ratio = float(rp_args["base_ratio"]) if "base_ratio" in rp_args else 0.0 | |
self.power = int(rp_args["power"]) if "power" in rp_args else 1 | |
prompts = prompt if isinstance(prompt, list) else [prompt] | |
n_prompts = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt] | |
self.batch = batch = num_images_per_prompt * len(prompts) | |
if use_base: | |
bases = prompts.copy() | |
n_bases = n_prompts.copy() | |
for i, prompt in enumerate(prompts): | |
parts = prompt.split(KBASE) | |
if len(parts) == 2: | |
bases[i], prompts[i] = parts | |
elif len(parts) > 2: | |
raise ValueError(f"Multiple instances of {KBASE} found in prompt: {prompt}") | |
for i, prompt in enumerate(n_prompts): | |
n_parts = prompt.split(KBASE) | |
if len(n_parts) == 2: | |
n_bases[i], n_prompts[i] = n_parts | |
elif len(n_parts) > 2: | |
raise ValueError(f"Multiple instances of {KBASE} found in negative prompt: {prompt}") | |
all_bases_cn, _ = promptsmaker(bases, num_images_per_prompt) | |
all_n_bases_cn, _ = promptsmaker(n_bases, num_images_per_prompt) | |
all_prompts_cn, all_prompts_p = promptsmaker(prompts, num_images_per_prompt) | |
all_n_prompts_cn, _ = promptsmaker(n_prompts, num_images_per_prompt) | |
equal = len(all_prompts_cn) == len(all_n_prompts_cn) | |
if Compel: | |
compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder) | |
def getcompelembs(prps): | |
embl = [] | |
for prp in prps: | |
embl.append(compel.build_conditioning_tensor(prp)) | |
return torch.cat(embl) | |
conds = getcompelembs(all_prompts_cn) | |
unconds = getcompelembs(all_n_prompts_cn) | |
base_embs = getcompelembs(all_bases_cn) if use_base else None | |
base_n_embs = getcompelembs(all_n_bases_cn) if use_base else None | |
# When using base, it seems more reasonable to use base prompts as prompt_embeddings rather than regional prompts | |
embs = getcompelembs(prompts) if not use_base else base_embs | |
n_embs = getcompelembs(n_prompts) if not use_base else base_n_embs | |
if use_base and self.base_ratio > 0: | |
conds = self.base_ratio * base_embs + (1 - self.base_ratio) * conds | |
unconds = self.base_ratio * base_n_embs + (1 - self.base_ratio) * unconds | |
prompt = negative_prompt = None | |
else: | |
conds = self.encode_prompt(prompts, device, 1, True)[0] | |
unconds = ( | |
self.encode_prompt(n_prompts, device, 1, True)[0] | |
if equal | |
else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0] | |
) | |
if use_base and self.base_ratio > 0: | |
base_embs = self.encode_prompt(bases, device, 1, True)[0] | |
base_n_embs = ( | |
self.encode_prompt(n_bases, device, 1, True)[0] | |
if equal | |
else self.encode_prompt(all_n_bases_cn, device, 1, True)[0] | |
) | |
conds = self.base_ratio * base_embs + (1 - self.base_ratio) * conds | |
unconds = self.base_ratio * base_n_embs + (1 - self.base_ratio) * unconds | |
embs = n_embs = None | |
if not active: | |
pcallback = None | |
mode = None | |
else: | |
if any(x in rp_args["mode"].upper() for x in ["COL", "ROW"]): | |
mode = "COL" if "COL" in rp_args["mode"].upper() else "ROW" | |
ocells, icells, regions = make_cells(rp_args["div"]) | |
elif "PRO" in rp_args["mode"].upper(): | |
regions = len(all_prompts_p[0]) | |
mode = "PROMPT" | |
reset_attnmaps(self) | |
self.ex = "EX" in rp_args["mode"].upper() | |
self.target_tokens = target_tokens = tokendealer(self, all_prompts_p) | |
thresholds = [float(x) for x in rp_args["th"].split(",")] | |
orig_hw = (height, width) | |
revers = True | |
def pcallback(s_self, step: int, timestep: int, latents: torch.Tensor, selfs=None): | |
if "PRO" in mode: # in Prompt mode, make masks from sum of attention maps | |
self.step = step | |
if len(self.attnmaps_sizes) > 3: | |
self.history[step] = self.attnmaps.copy() | |
for hw in self.attnmaps_sizes: | |
allmasks = [] | |
basemasks = [None] * batch | |
for tt, th in zip(target_tokens, thresholds): | |
for b in range(batch): | |
key = f"{tt}-{b}" | |
_, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step) | |
mask = mask.unsqueeze(0).unsqueeze(-1) | |
if self.ex: | |
allmasks[b::batch] = [x - mask for x in allmasks[b::batch]] | |
allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]] | |
allmasks.append(mask) | |
basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask | |
basemasks = [1 - mask for mask in basemasks] | |
basemasks = [torch.where(x > 0, 1, 0) for x in basemasks] | |
allmasks = basemasks + allmasks | |
self.attnmasks[hw] = torch.cat(allmasks) | |
self.maskready = True | |
return latents | |
def hook_forward(module): | |
# diffusers==0.23.2 | |
def forward( | |
hidden_states: torch.Tensor, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
temb: Optional[torch.Tensor] = None, | |
scale: float = 1.0, | |
) -> torch.Tensor: | |
attn = module | |
xshape = hidden_states.shape | |
self.hw = (h, w) = split_dims(xshape[1], *orig_hw) | |
if revers: | |
nx, px = hidden_states.chunk(2) | |
else: | |
px, nx = hidden_states.chunk(2) | |
if equal: | |
hidden_states = torch.cat( | |
[px for i in range(regions)] + [nx for i in range(regions)], | |
0, | |
) | |
encoder_hidden_states = torch.cat([conds] + [unconds]) | |
else: | |
hidden_states = torch.cat([px for i in range(regions)] + [nx], 0) | |
encoder_hidden_states = torch.cat([conds] + [unconds]) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
hidden_states = scaled_dot_product_attention( | |
self, | |
query, | |
key, | |
value, | |
attn_mask=attention_mask, | |
dropout_p=0.0, | |
is_causal=False, | |
getattn="PRO" in mode, | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
#### Regional Prompting Col/Row mode | |
if any(x in mode for x in ["COL", "ROW"]): | |
reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2]) | |
center = reshaped.shape[0] // 2 | |
px = reshaped[0:center] if equal else reshaped[0:-batch] | |
nx = reshaped[center:] if equal else reshaped[-batch:] | |
outs = [px, nx] if equal else [px] | |
for out in outs: | |
c = 0 | |
for i, ocell in enumerate(ocells): | |
for icell in icells[i]: | |
if "ROW" in mode: | |
out[ | |
0:batch, | |
int(h * ocell[0]) : int(h * ocell[1]), | |
int(w * icell[0]) : int(w * icell[1]), | |
:, | |
] = out[ | |
c * batch : (c + 1) * batch, | |
int(h * ocell[0]) : int(h * ocell[1]), | |
int(w * icell[0]) : int(w * icell[1]), | |
:, | |
] | |
else: | |
out[ | |
0:batch, | |
int(h * icell[0]) : int(h * icell[1]), | |
int(w * ocell[0]) : int(w * ocell[1]), | |
:, | |
] = out[ | |
c * batch : (c + 1) * batch, | |
int(h * icell[0]) : int(h * icell[1]), | |
int(w * ocell[0]) : int(w * ocell[1]), | |
:, | |
] | |
c += 1 | |
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx) | |
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0) | |
hidden_states = hidden_states.reshape(xshape) | |
#### Regional Prompting Prompt mode | |
elif "PRO" in mode: | |
px, nx = ( | |
torch.chunk(hidden_states) if equal else hidden_states[0:-batch], | |
hidden_states[-batch:], | |
) | |
if (h, w) in self.attnmasks and self.maskready: | |
def mask(input): | |
out = torch.multiply(input, self.attnmasks[(h, w)]) | |
for b in range(batch): | |
for r in range(1, regions): | |
out[b] = out[b] + out[r * batch + b] | |
return out | |
px, nx = (mask(px), mask(nx)) if equal else (mask(px), nx) | |
px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx) | |
hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0) | |
return hidden_states | |
return forward | |
def hook_forwards(root_module: torch.nn.Module): | |
for name, module in root_module.named_modules(): | |
if "attn2" in name and module.__class__.__name__ == "Attention": | |
module.forward = hook_forward(module) | |
hook_forwards(self.unet) | |
output = self.stable_diffusion_call( | |
prompt=prompt, | |
prompt_embeds=embs, | |
negative_prompt=negative_prompt, | |
negative_prompt_embeds=n_embs, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
eta=eta, | |
generator=generator, | |
latents=latents, | |
output_type=output_type, | |
return_dict=return_dict, | |
callback_on_step_end=pcallback, | |
) | |
if "save_mask" in rp_args: | |
save_mask = rp_args["save_mask"] | |
else: | |
save_mask = False | |
if mode == "PROMPT" and save_mask: | |
saveattnmaps( | |
self, | |
output, | |
height, | |
width, | |
thresholds, | |
num_inference_steps // 2, | |
regions, | |
) | |
return output | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = ( | |
batch_size, | |
num_channels_latents, | |
int(height) // self.vae_scale_factor, | |
int(width) // self.vae_scale_factor, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if self.text_encoder is not None: | |
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
ip_adapter_image=None, | |
ip_adapter_image_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: | |
raise ValueError( | |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." | |
) | |
if ip_adapter_image_embeds is not None: | |
if not isinstance(ip_adapter_image_embeds, list): | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" | |
) | |
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: | |
raise ValueError( | |
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" | |
) | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def stable_diffusion_call( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
sigmas: List[float] = None, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
**kwargs, | |
): | |
r""" | |
The call function to the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
A higher guidance scale value encourages the model to generate images closely linked to the text | |
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor is generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
provided, text embeddings are generated from the `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when | |
using zero terminal SNR. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
second element is a list of `bool`s indicating whether the corresponding generated image contains | |
"not-safe-for-work" (nsfw) content. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
self.model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
self._optional_components = ["safety_checker", "feature_extractor", "image_encoder"] | |
self._exclude_from_cpu_offload = ["safety_checker"] | |
self._callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", | |
) | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 0. Default height and width to unet | |
if not height or not width: | |
height = ( | |
self.unet.config.sample_size | |
if self._is_unet_config_sample_size_int | |
else self.unet.config.sample_size[0] | |
) | |
width = ( | |
self.unet.config.sample_size | |
if self._is_unet_config_sample_size_int | |
else self.unet.config.sample_size[1] | |
) | |
height, width = height * self.vae_scale_factor, width * self.vae_scale_factor | |
# to deal with lora scaling and other possible forward hooks | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
prompt_embeds, | |
negative_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas | |
) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 6.1 Add image embeds for IP-Adapter | |
added_cond_kwargs = ( | |
{"image_embeds": image_embeds} | |
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) | |
else None | |
) | |
# 6.2 Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ | |
0 | |
] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
r"""Encodes the prompt into text encoder hidden states.""" | |
batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
# get prompt text embeddings | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# cast text_encoder.dtype to prevent overflow when using bf16 | |
text_input_ids = text_input_ids.to(device=device, dtype=self.text_encoder.dtype) | |
prompt_embeds = self.text_encoder( | |
text_input_ids, | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
text_encoder_lora_scale = None | |
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | |
text_encoder_lora_scale = lora_scale | |
if text_encoder_lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | |
# dynamically adjust the LoRA scale | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
prompt_embeds = prompt_embeds[0] | |
# duplicate text embeddings for each generation per prompt | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] | |
elif type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: process multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Unscale LoRA weights to avoid overfitting. This is a hack | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
"""Encodes the image into image encoder hidden states.""" | |
dtype = next(self.image_encoder.parameters()).dtype | |
if not isinstance(image, torch.Tensor): | |
image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
image = image.to(device=device, dtype=dtype) | |
if output_hidden_states: | |
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_enc_hidden_states = self.image_encoder( | |
torch.zeros_like(image), output_hidden_states=True | |
).hidden_states[-2] | |
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
num_images_per_prompt, dim=0 | |
) | |
return image_enc_hidden_states, uncond_image_enc_hidden_states | |
else: | |
image_embeds = self.image_encoder(image).image_embeds | |
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
uncond_image_embeds = torch.zeros_like(image_embeds) | |
return image_embeds, uncond_image_embeds | |
def prepare_ip_adapter_image_embeds( | |
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance | |
): | |
"""Prepares and processes IP-Adapter image embeddings.""" | |
image_embeds = [] | |
if do_classifier_free_guidance: | |
negative_image_embeds = [] | |
if ip_adapter_image_embeds is None: | |
for image in ip_adapter_image: | |
if not isinstance(image, torch.Tensor): | |
image = self.image_processor.preprocess(image) | |
image = image.to(device=device) | |
if len(image.shape) == 3: | |
image = image.unsqueeze(0) | |
image_emb, neg_image_emb = self.encode_image(image, device, num_images_per_prompt, True) | |
image_embeds.append(image_emb) | |
if do_classifier_free_guidance: | |
negative_image_embeds.append(neg_image_emb) | |
if len(image_embeds) == 1: | |
image_embeds = image_embeds[0] | |
if do_classifier_free_guidance: | |
negative_image_embeds = negative_image_embeds[0] | |
else: | |
image_embeds = torch.cat(image_embeds, dim=0) | |
if do_classifier_free_guidance: | |
negative_image_embeds = torch.cat(negative_image_embeds, dim=0) | |
else: | |
repeat_dim = 2 if do_classifier_free_guidance else 1 | |
image_embeds = ip_adapter_image_embeds.repeat_interleave(repeat_dim, dim=0) | |
if do_classifier_free_guidance: | |
negative_image_embeds = torch.zeros_like(image_embeds) | |
if do_classifier_free_guidance: | |
image_embeds = torch.cat([negative_image_embeds, image_embeds]) | |
return image_embeds | |
def run_safety_checker(self, image, device, dtype): | |
"""Runs the safety checker on the generated image.""" | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
return image, has_nsfw_concept | |
if isinstance(self.safety_checker, StableDiffusionSafetyChecker): | |
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, | |
clip_input=safety_checker_input.pixel_values.to(dtype), | |
) | |
else: | |
images_np = self.numpy_to_pil(image) | |
safety_checker_input = self.safety_checker.feature_extractor(images_np, return_tensors="pt").to(device) | |
has_nsfw_concept = self.safety_checker( | |
images=image, | |
clip_input=safety_checker_input.pixel_values.to(dtype), | |
)[1] | |
return image, has_nsfw_concept | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def decode_latents(self, latents): | |
"""Decodes the latents to images.""" | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
def guidance_scale(self): | |
return self._guidance_scale | |
def guidance_rescale(self): | |
return self._guidance_rescale | |
# copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion | |
def get_guidance_scale_embedding( | |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
): | |
"""Gets the guidance scale embedding for classifier free guidance conditioning. | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
w (`torch.Tensor`): | |
The guidance scale tensor used for classifier free guidance conditioning. | |
embedding_dim (`int`, defaults to 512): | |
The dimensionality of the guidance scale embedding. | |
dtype (`torch.dtype`, defaults to torch.float32): | |
The dtype of the embedding. | |
Returns: | |
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def clip_skip(self): | |
return self._clip_skip | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
### Make prompt list for each regions | |
def promptsmaker(prompts, batch): | |
out_p = [] | |
plen = len(prompts) | |
for prompt in prompts: | |
add = "" | |
if KCOMM in prompt: | |
add, prompt = prompt.split(KCOMM) | |
add = add.strip() + " " | |
prompts = [p.strip() for p in prompt.split(KBRK)] | |
out_p.append([add + p for i, p in enumerate(prompts)]) | |
out = [None] * batch * len(out_p[0]) * len(out_p) | |
for p, prs in enumerate(out_p): # inputs prompts | |
for r, pr in enumerate(prs): # prompts for regions | |
start = (p + r * plen) * batch | |
out[start : start + batch] = [pr] * batch # P1R1B1,P1R1B2...,P1R2B1,P1R2B2...,P2R1B1... | |
return out, out_p | |
### make regions from ratios | |
### ";" makes outercells, "," makes inner cells | |
def make_cells(ratios): | |
if ";" not in ratios and "," in ratios: | |
ratios = ratios.replace(",", ";") | |
ratios = ratios.split(";") | |
ratios = [inratios.split(",") for inratios in ratios] | |
icells = [] | |
ocells = [] | |
def startend(cells, array): | |
current_start = 0 | |
array = [float(x) for x in array] | |
for value in array: | |
end = current_start + (value / sum(array)) | |
cells.append([current_start, end]) | |
current_start = end | |
startend(ocells, [r[0] for r in ratios]) | |
for inratios in ratios: | |
if 2 > len(inratios): | |
icells.append([[0, 1]]) | |
else: | |
add = [] | |
startend(add, inratios[1:]) | |
icells.append(add) | |
return ocells, icells, sum(len(cell) for cell in icells) | |
def make_emblist(self, prompts): | |
with torch.no_grad(): | |
tokens = self.tokenizer( | |
prompts, | |
max_length=self.tokenizer.model_max_length, | |
padding=True, | |
truncation=True, | |
return_tensors="pt", | |
).input_ids.to(self.device) | |
embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype=self.dtype) | |
return embs | |
def split_dims(xs, height, width): | |
def repeat_div(x, y): | |
while y > 0: | |
x = math.ceil(x / 2) | |
y = y - 1 | |
return x | |
scale = math.ceil(math.log2(math.sqrt(height * width / xs))) | |
dsh = repeat_div(height, scale) | |
dsw = repeat_div(width, scale) | |
return dsh, dsw | |
##### for prompt mode | |
def get_attn_maps(self, attn): | |
height, width = self.hw | |
target_tokens = self.target_tokens | |
if (height, width) not in self.attnmaps_sizes: | |
self.attnmaps_sizes.append((height, width)) | |
for b in range(self.batch): | |
for t in target_tokens: | |
power = self.power | |
add = attn[b, :, :, t[0] : t[0] + len(t)] ** (power) * (self.attnmaps_sizes.index((height, width)) + 1) | |
add = torch.sum(add, dim=2) | |
key = f"{t}-{b}" | |
if key not in self.attnmaps: | |
self.attnmaps[key] = add | |
else: | |
if self.attnmaps[key].shape[1] != add.shape[1]: | |
add = add.view(8, height, width) | |
add = FF.resize(add, self.attnmaps_sizes[0], antialias=None) | |
add = add.reshape_as(self.attnmaps[key]) | |
self.attnmaps[key] = self.attnmaps[key] + add | |
def reset_attnmaps(self): # init parameters in every batch | |
self.step = 0 | |
self.attnmaps = {} # made from attention maps | |
self.attnmaps_sizes = [] # height,width set of u-net blocks | |
self.attnmasks = {} # made from attnmaps for regions | |
self.maskready = False | |
self.history = {} | |
def saveattnmaps(self, output, h, w, th, step, regions): | |
masks = [] | |
for i, mask in enumerate(self.history[step].values()): | |
img, _, mask = makepmask(self, mask, h, w, th[i % len(th)], step) | |
if self.ex: | |
masks = [x - mask for x in masks] | |
masks.append(mask) | |
if len(masks) == regions - 1: | |
output.images.extend([FF.to_pil_image(mask) for mask in masks]) | |
masks = [] | |
else: | |
output.images.append(img) | |
def makepmask( | |
self, mask, h, w, th, step | |
): # make masks from attention cache return [for preview, for attention, for Latent] | |
th = th - step * 0.005 | |
if 0.05 >= th: | |
th = 0.05 | |
mask = torch.mean(mask, dim=0) | |
mask = mask / mask.max().item() | |
mask = torch.where(mask > th, 1, 0) | |
mask = mask.float() | |
mask = mask.view(1, *self.attnmaps_sizes[0]) | |
img = FF.to_pil_image(mask) | |
img = img.resize((w, h)) | |
mask = FF.resize(mask, (h, w), interpolation=FF.InterpolationMode.NEAREST, antialias=None) | |
lmask = mask | |
mask = mask.reshape(h * w) | |
mask = torch.where(mask > 0.1, 1, 0) | |
return img, mask, lmask | |
def tokendealer(self, all_prompts): | |
for prompts in all_prompts: | |
targets = [p.split(",")[-1] for p in prompts[1:]] | |
tt = [] | |
for target in targets: | |
ptokens = ( | |
self.tokenizer( | |
prompts, | |
max_length=self.tokenizer.model_max_length, | |
padding=True, | |
truncation=True, | |
return_tensors="pt", | |
).input_ids | |
)[0] | |
ttokens = ( | |
self.tokenizer( | |
target, | |
max_length=self.tokenizer.model_max_length, | |
padding=True, | |
truncation=True, | |
return_tensors="pt", | |
).input_ids | |
)[0] | |
tlist = [] | |
for t in range(ttokens.shape[0] - 2): | |
for p in range(ptokens.shape[0]): | |
if ttokens[t + 1] == ptokens[p]: | |
tlist.append(p) | |
if tlist != []: | |
tt.append(tlist) | |
return tt | |
def scaled_dot_product_attention( | |
self, | |
query, | |
key, | |
value, | |
attn_mask=None, | |
dropout_p=0.0, | |
is_causal=False, | |
scale=None, | |
getattn=False, | |
) -> torch.Tensor: | |
# Efficient implementation equivalent to the following: | |
L, S = query.size(-2), key.size(-2) | |
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale | |
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=self.device) | |
if is_causal: | |
assert attn_mask is None | |
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0) | |
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) | |
attn_bias.to(query.dtype) | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
else: | |
attn_bias += attn_mask | |
attn_weight = query @ key.transpose(-2, -1) * scale_factor | |
attn_weight += attn_bias | |
attn_weight = torch.softmax(attn_weight, dim=-1) | |
if getattn: | |
get_attn_maps(self, attn_weight) | |
attn_weight = torch.dropout(attn_weight, dropout_p, train=True) | |
return attn_weight @ value | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
r""" | |
Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on | |
Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Args: | |
noise_cfg (`torch.Tensor`): | |
The predicted noise tensor for the guided diffusion process. | |
noise_pred_text (`torch.Tensor`): | |
The predicted noise tensor for the text-guided diffusion process. | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
A rescale factor applied to the noise predictions. | |
Returns: | |
noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |