Spaces:
Runtime error
Runtime error
| import tempfile | |
| import unittest | |
| import torch | |
| from diffusers import ( | |
| DEISMultistepScheduler, | |
| DPMSolverMultistepScheduler, | |
| DPMSolverSinglestepScheduler, | |
| UniPCMultistepScheduler, | |
| ) | |
| from .test_schedulers import SchedulerCommonTest | |
| class DPMSolverSinglestepSchedulerTest(SchedulerCommonTest): | |
| scheduler_classes = (DPMSolverSinglestepScheduler,) | |
| forward_default_kwargs = (("num_inference_steps", 25),) | |
| def get_scheduler_config(self, **kwargs): | |
| config = { | |
| "num_train_timesteps": 1000, | |
| "beta_start": 0.0001, | |
| "beta_end": 0.02, | |
| "beta_schedule": "linear", | |
| "solver_order": 2, | |
| "prediction_type": "epsilon", | |
| "thresholding": False, | |
| "sample_max_value": 1.0, | |
| "algorithm_type": "dpmsolver++", | |
| "solver_type": "midpoint", | |
| "lambda_min_clipped": -float("inf"), | |
| "variance_type": None, | |
| "final_sigmas_type": "sigma_min", | |
| } | |
| config.update(**kwargs) | |
| return config | |
| def check_over_configs(self, time_step=0, **config): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output, new_output = sample, sample | |
| for t in range(time_step, time_step + scheduler.config.solver_order + 1): | |
| t = scheduler.timesteps[t] | |
| output = scheduler.step(residual, t, output, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def test_from_save_pretrained(self): | |
| pass | |
| def check_over_forward(self, time_step=0, **forward_kwargs): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residuals (must be after setting timesteps) | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| scheduler.save_config(tmpdirname) | |
| new_scheduler = scheduler_class.from_pretrained(tmpdirname) | |
| # copy over dummy past residuals | |
| new_scheduler.set_timesteps(num_inference_steps) | |
| # copy over dummy past residual (must be after setting timesteps) | |
| new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] | |
| output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | |
| assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | |
| def full_loop(self, scheduler=None, **config): | |
| if scheduler is None: | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| return sample | |
| def full_loop_custom_timesteps(self, **config): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(**config) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| scheduler.set_timesteps(num_inference_steps) | |
| timesteps = scheduler.timesteps | |
| # reset the timesteps using`timesteps` | |
| scheduler = scheduler_class(**scheduler_config) | |
| scheduler.set_timesteps(num_inference_steps=None, timesteps=timesteps) | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| return sample | |
| def test_full_uneven_loop(self): | |
| scheduler = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) | |
| num_inference_steps = 50 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| # make sure that the first t is uneven | |
| for i, t in enumerate(scheduler.timesteps[3:]): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2574) < 1e-3 | |
| def test_timesteps(self): | |
| for timesteps in [25, 50, 100, 999, 1000]: | |
| self.check_over_configs(num_train_timesteps=timesteps) | |
| def test_switch(self): | |
| # make sure that iterating over schedulers with same config names gives same results | |
| # for defaults | |
| scheduler = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) | |
| sample = self.full_loop(scheduler=scheduler) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2791) < 1e-3 | |
| scheduler = DEISMultistepScheduler.from_config(scheduler.config) | |
| scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) | |
| scheduler = UniPCMultistepScheduler.from_config(scheduler.config) | |
| scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) | |
| sample = self.full_loop(scheduler=scheduler) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2791) < 1e-3 | |
| def test_thresholding(self): | |
| self.check_over_configs(thresholding=False) | |
| for order in [1, 2, 3]: | |
| for solver_type in ["midpoint", "heun"]: | |
| for threshold in [0.5, 1.0, 2.0]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| self.check_over_configs( | |
| thresholding=True, | |
| prediction_type=prediction_type, | |
| sample_max_value=threshold, | |
| algorithm_type="dpmsolver++", | |
| solver_order=order, | |
| solver_type=solver_type, | |
| ) | |
| def test_prediction_type(self): | |
| for prediction_type in ["epsilon", "v_prediction"]: | |
| self.check_over_configs(prediction_type=prediction_type) | |
| def test_solver_order_and_type(self): | |
| for algorithm_type in ["dpmsolver", "dpmsolver++", "sde-dpmsolver++"]: | |
| for solver_type in ["midpoint", "heun"]: | |
| for order in [1, 2, 3]: | |
| for prediction_type in ["epsilon", "sample"]: | |
| if algorithm_type == "sde-dpmsolver++": | |
| if order == 3: | |
| continue | |
| else: | |
| self.check_over_configs( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| sample = self.full_loop( | |
| solver_order=order, | |
| solver_type=solver_type, | |
| prediction_type=prediction_type, | |
| algorithm_type=algorithm_type, | |
| ) | |
| assert not torch.isnan(sample).any(), "Samples have nan numbers" | |
| def test_lower_order_final(self): | |
| self.check_over_configs(lower_order_final=True) | |
| self.check_over_configs(lower_order_final=False) | |
| def test_lambda_min_clipped(self): | |
| self.check_over_configs(lambda_min_clipped=-float("inf")) | |
| self.check_over_configs(lambda_min_clipped=-5.1) | |
| def test_variance_type(self): | |
| self.check_over_configs(variance_type=None) | |
| self.check_over_configs(variance_type="learned_range") | |
| def test_inference_steps(self): | |
| for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: | |
| self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) | |
| def test_full_loop_no_noise(self): | |
| sample = self.full_loop() | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2791) < 1e-3 | |
| def test_full_loop_with_karras(self): | |
| sample = self.full_loop(use_karras_sigmas=True) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.2248) < 1e-3 | |
| def test_full_loop_with_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction") | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.1453) < 1e-3 | |
| def test_full_loop_with_karras_and_v_prediction(self): | |
| sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_mean.item() - 0.0649) < 1e-3 | |
| def test_fp16_support(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0) | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter.half() | |
| scheduler.set_timesteps(num_inference_steps) | |
| for i, t in enumerate(scheduler.timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| assert sample.dtype == torch.float16 | |
| def test_step_shape(self): | |
| kwargs = dict(self.forward_default_kwargs) | |
| num_inference_steps = kwargs.pop("num_inference_steps", None) | |
| for scheduler_class in self.scheduler_classes: | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| sample = self.dummy_sample | |
| residual = 0.1 * sample | |
| if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | |
| scheduler.set_timesteps(num_inference_steps) | |
| elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | |
| kwargs["num_inference_steps"] = num_inference_steps | |
| # copy over dummy past residuals (must be done after set_timesteps) | |
| dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] | |
| scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] | |
| time_step_0 = scheduler.timesteps[0] | |
| time_step_1 = scheduler.timesteps[1] | |
| output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample | |
| output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample | |
| self.assertEqual(output_0.shape, sample.shape) | |
| self.assertEqual(output_0.shape, output_1.shape) | |
| def test_full_loop_with_noise(self): | |
| scheduler_class = self.scheduler_classes[0] | |
| scheduler_config = self.get_scheduler_config() | |
| scheduler = scheduler_class(**scheduler_config) | |
| num_inference_steps = 10 | |
| t_start = 5 | |
| model = self.dummy_model() | |
| sample = self.dummy_sample_deter | |
| scheduler.set_timesteps(num_inference_steps) | |
| # add noise | |
| noise = self.dummy_noise_deter | |
| timesteps = scheduler.timesteps[t_start * scheduler.order :] | |
| sample = scheduler.add_noise(sample, noise, timesteps[:1]) | |
| for i, t in enumerate(timesteps): | |
| residual = model(sample, t) | |
| sample = scheduler.step(residual, t, sample).prev_sample | |
| result_sum = torch.sum(torch.abs(sample)) | |
| result_mean = torch.mean(torch.abs(sample)) | |
| assert abs(result_sum.item() - 269.2187) < 1e-2, f" expected result sum 269.2187, but get {result_sum}" | |
| assert abs(result_mean.item() - 0.3505) < 1e-3, f" expected result mean 0.3505, but get {result_mean}" | |
| def test_custom_timesteps(self): | |
| for prediction_type in ["epsilon", "sample", "v_prediction"]: | |
| for lower_order_final in [True, False]: | |
| for final_sigmas_type in ["sigma_min", "zero"]: | |
| sample = self.full_loop( | |
| prediction_type=prediction_type, | |
| lower_order_final=lower_order_final, | |
| final_sigmas_type=final_sigmas_type, | |
| ) | |
| sample_custom_timesteps = self.full_loop_custom_timesteps( | |
| prediction_type=prediction_type, | |
| lower_order_final=lower_order_final, | |
| final_sigmas_type=final_sigmas_type, | |
| ) | |
| assert torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5, ( | |
| f"Scheduler outputs are not identical for prediction_type: {prediction_type}, lower_order_final: {lower_order_final} and final_sigmas_type: {final_sigmas_type}" | |
| ) | |
| def test_beta_sigmas(self): | |
| self.check_over_configs(use_beta_sigmas=True) | |
| def test_exponential_sigmas(self): | |
| self.check_over_configs(use_exponential_sigmas=True) | |