Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import copy | |
| import itertools | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| import warnings | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed | |
| from huggingface_hub import create_repo, upload_folder | |
| from huggingface_hub.utils import insecure_hashlib | |
| from peft import LoraConfig, prepare_model_for_kbit_training, set_peft_model_state_dict | |
| from peft.utils import get_peft_model_state_dict | |
| from PIL import Image | |
| from PIL.ImageOps import exif_transpose | |
| from torch.utils.data import Dataset | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import crop | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, CLIPTokenizer, LlamaForCausalLM, PretrainedConfig, T5Tokenizer | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| BitsAndBytesConfig, | |
| FlowMatchEulerDiscreteScheduler, | |
| HiDreamImagePipeline, | |
| HiDreamImageTransformer2DModel, | |
| ) | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import ( | |
| cast_training_params, | |
| compute_density_for_timestep_sampling, | |
| compute_loss_weighting_for_sd3, | |
| free_memory, | |
| ) | |
| from diffusers.utils import ( | |
| check_min_version, | |
| convert_unet_state_dict_to_peft, | |
| is_wandb_available, | |
| ) | |
| from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
| from diffusers.utils.import_utils import is_torch_npu_available | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.33.0.dev0") | |
| logger = get_logger(__name__) | |
| if is_torch_npu_available(): | |
| torch.npu.config.allow_internal_format = False | |
| def save_model_card( | |
| repo_id: str, | |
| images=None, | |
| base_model: str = None, | |
| instance_prompt=None, | |
| validation_prompt=None, | |
| repo_folder=None, | |
| ): | |
| widget_dict = [] | |
| if images is not None: | |
| for i, image in enumerate(images): | |
| image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
| widget_dict.append( | |
| {"text": validation_prompt if validation_prompt else " ", "output": {"url": f"image_{i}.png"}} | |
| ) | |
| model_description = f""" | |
| # HiDream Image DreamBooth LoRA - {repo_id} | |
| <Gallery /> | |
| ## Model description | |
| These are {repo_id} DreamBooth LoRA weights for {base_model}. | |
| The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [HiDream Image diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_hidream.md). | |
| ## Trigger words | |
| You should use `{instance_prompt}` to trigger the image generation. | |
| ## Download model | |
| [Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab. | |
| ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) | |
| ```py | |
| >>> import torch | |
| >>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM | |
| >>> from diffusers import HiDreamImagePipeline | |
| >>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct") | |
| >>> text_encoder_4 = LlamaForCausalLM.from_pretrained( | |
| ... "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
| ... output_hidden_states=True, | |
| ... output_attentions=True, | |
| ... torch_dtype=torch.bfloat16, | |
| ... ) | |
| >>> pipe = HiDreamImagePipeline.from_pretrained( | |
| ... "HiDream-ai/HiDream-I1-Full", | |
| ... tokenizer_4=tokenizer_4, | |
| ... text_encoder_4=text_encoder_4, | |
| ... torch_dtype=torch.bfloat16, | |
| ... ) | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> pipe.load_lora_weights(f"{repo_id}") | |
| >>> image = pipe(f"{instance_prompt}").images[0] | |
| ``` | |
| For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) | |
| """ | |
| model_card = load_or_create_model_card( | |
| repo_id_or_path=repo_id, | |
| from_training=True, | |
| license="mit", | |
| base_model=base_model, | |
| prompt=instance_prompt, | |
| model_description=model_description, | |
| widget=widget_dict, | |
| ) | |
| tags = [ | |
| "text-to-image", | |
| "diffusers-training", | |
| "diffusers", | |
| "lora", | |
| "hidream", | |
| "hidream-diffusers", | |
| "template:sd-lora", | |
| ] | |
| model_card = populate_model_card(model_card, tags=tags) | |
| model_card.save(os.path.join(repo_folder, "README.md")) | |
| def load_text_encoders(class_one, class_two, class_three): | |
| text_encoder_one = class_one.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
| ) | |
| text_encoder_two = class_two.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
| ) | |
| text_encoder_three = class_three.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant | |
| ) | |
| text_encoder_four = LlamaForCausalLM.from_pretrained( | |
| args.pretrained_text_encoder_4_name_or_path, | |
| output_hidden_states=True, | |
| output_attentions=True, | |
| torch_dtype=torch.bfloat16, | |
| ) | |
| return text_encoder_one, text_encoder_two, text_encoder_three, text_encoder_four | |
| def log_validation( | |
| pipeline, | |
| args, | |
| accelerator, | |
| pipeline_args, | |
| epoch, | |
| torch_dtype, | |
| is_final_validation=False, | |
| ): | |
| args.num_validation_images = args.num_validation_images if args.num_validation_images else 1 | |
| logger.info( | |
| f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
| f" {args.validation_prompt}." | |
| ) | |
| pipeline = pipeline.to(accelerator.device, dtype=torch_dtype) | |
| pipeline.set_progress_bar_config(disable=True) | |
| # run inference | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None | |
| autocast_ctx = torch.autocast(accelerator.device.type) if not is_final_validation else nullcontext() | |
| images = [] | |
| for _ in range(args.num_validation_images): | |
| with autocast_ctx: | |
| image = pipeline( | |
| prompt_embeds_t5=pipeline_args["prompt_embeds_t5"], | |
| prompt_embeds_llama3=pipeline_args["prompt_embeds_llama3"], | |
| negative_prompt_embeds_t5=pipeline_args["negative_prompt_embeds_t5"], | |
| negative_prompt_embeds_llama3=pipeline_args["negative_prompt_embeds_llama3"], | |
| pooled_prompt_embeds=pipeline_args["pooled_prompt_embeds"], | |
| negative_pooled_prompt_embeds=pipeline_args["negative_pooled_prompt_embeds"], | |
| generator=generator, | |
| ).images[0] | |
| images.append(image) | |
| for tracker in accelerator.trackers: | |
| phase_name = "test" if is_final_validation else "validation" | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images(phase_name, np_images, epoch, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log( | |
| { | |
| phase_name: [ | |
| wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images) | |
| ] | |
| } | |
| ) | |
| del pipeline | |
| free_memory() | |
| return images | |
| def import_model_class_from_model_name_or_path( | |
| pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
| ): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModelWithProjection" or model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModelWithProjection | |
| return CLIPTextModelWithProjection | |
| elif model_class == "T5EncoderModel": | |
| from transformers import T5EncoderModel | |
| return T5EncoderModel | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_tokenizer_4_name_or_path", | |
| type=str, | |
| default="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_text_encoder_4_name_or_path", | |
| type=str, | |
| default="meta-llama/Meta-Llama-3.1-8B-Instruct", | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--bnb_quantization_config_path", | |
| type=str, | |
| default=None, | |
| help="Quantization config in a JSON file that will be used to define the bitsandbytes quant config of the DiT.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--instance_data_dir", | |
| type=str, | |
| default=None, | |
| help=("A folder containing the training data. "), | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument( | |
| "--image_column", | |
| type=str, | |
| default="image", | |
| help="The column of the dataset containing the target image. By " | |
| "default, the standard Image Dataset maps out 'file_name' " | |
| "to 'image'.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default=None, | |
| help="The column of the dataset containing the instance prompt for each image", | |
| ) | |
| parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.") | |
| parser.add_argument( | |
| "--class_data_dir", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="A folder containing the training data of class images.", | |
| ) | |
| parser.add_argument( | |
| "--instance_prompt", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'", | |
| ) | |
| parser.add_argument( | |
| "--class_prompt", | |
| type=str, | |
| default=None, | |
| help="The prompt to specify images in the same class as provided instance images.", | |
| ) | |
| parser.add_argument( | |
| "--max_sequence_length", | |
| type=int, | |
| default=128, | |
| help="Maximum sequence length to use with t5 and llama encoders", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| help="A prompt that is used during validation to verify that the model is learning.", | |
| ) | |
| parser.add_argument( | |
| "--skip_final_inference", | |
| default=False, | |
| action="store_true", | |
| help="Whether to skip the final inference step with loaded lora weights upon training completion. This will run intermediate validation inference if `validation_prompt` is provided. Specify to reduce memory.", | |
| ) | |
| parser.add_argument( | |
| "--final_validation_prompt", | |
| type=str, | |
| default=None, | |
| help="A prompt that is used during a final validation to verify that the model is learning. Ignored if `--validation_prompt` is provided.", | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=4, | |
| help="Number of images that should be generated during validation with `validation_prompt`.", | |
| ) | |
| parser.add_argument( | |
| "--validation_epochs", | |
| type=int, | |
| default=50, | |
| help=( | |
| "Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--rank", | |
| type=int, | |
| default=4, | |
| help=("The dimension of the LoRA update matrices."), | |
| ) | |
| parser.add_argument("--lora_dropout", type=float, default=0.0, help="Dropout probability for LoRA layers") | |
| parser.add_argument( | |
| "--with_prior_preservation", | |
| default=False, | |
| action="store_true", | |
| help="Flag to add prior preservation loss.", | |
| ) | |
| parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
| parser.add_argument( | |
| "--num_class_images", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Minimal class images for prior preservation loss. If there are not enough images already present in" | |
| " class_data_dir, additional images will be sampled with class_prompt." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="hidream-dreambooth-lora", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| action="store_true", | |
| help="whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument( | |
| "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--weighting_scheme", | |
| type=str, | |
| default="none", | |
| choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"], | |
| help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'), | |
| ) | |
| parser.add_argument( | |
| "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." | |
| ) | |
| parser.add_argument( | |
| "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." | |
| ) | |
| parser.add_argument( | |
| "--mode_scale", | |
| type=float, | |
| default=1.29, | |
| help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", | |
| ) | |
| parser.add_argument( | |
| "--optimizer", | |
| type=str, | |
| default="AdamW", | |
| help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'), | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", | |
| action="store_true", | |
| help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW", | |
| ) | |
| parser.add_argument( | |
| "--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers." | |
| ) | |
| parser.add_argument( | |
| "--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam and Prodigy optimizers." | |
| ) | |
| parser.add_argument( | |
| "--prodigy_beta3", | |
| type=float, | |
| default=None, | |
| help="coefficients for computing the Prodigy stepsize using running averages. If set to None, " | |
| "uses the value of square root of beta2. Ignored if optimizer is adamW", | |
| ) | |
| parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params") | |
| parser.add_argument( | |
| "--lora_layers", | |
| type=str, | |
| default=None, | |
| help=( | |
| 'The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. E.g. - "to_k,to_q,to_v" will result in lora training of attention layers only' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--adam_epsilon", | |
| type=float, | |
| default=1e-08, | |
| help="Epsilon value for the Adam optimizer and Prodigy optimizers.", | |
| ) | |
| parser.add_argument( | |
| "--prodigy_use_bias_correction", | |
| type=bool, | |
| default=True, | |
| help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW", | |
| ) | |
| parser.add_argument( | |
| "--prodigy_safeguard_warmup", | |
| type=bool, | |
| default=True, | |
| help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. " | |
| "Ignored if optimizer is adamW", | |
| ) | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--cache_latents", | |
| action="store_true", | |
| default=False, | |
| help="Cache the VAE latents", | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--upcast_before_saving", | |
| action="store_true", | |
| default=False, | |
| help=( | |
| "Whether to upcast the trained transformer layers to float32 before saving (at the end of training). " | |
| "Defaults to precision dtype used for training to save memory" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--offload", | |
| action="store_true", | |
| help="Whether to offload the VAE and the text encoder to CPU when they are not used.", | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| if args.dataset_name is None and args.instance_data_dir is None: | |
| raise ValueError("Specify either `--dataset_name` or `--instance_data_dir`") | |
| if args.dataset_name is not None and args.instance_data_dir is not None: | |
| raise ValueError("Specify only one of `--dataset_name` or `--instance_data_dir`") | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| if args.with_prior_preservation: | |
| if args.class_data_dir is None: | |
| raise ValueError("You must specify a data directory for class images.") | |
| if args.class_prompt is None: | |
| raise ValueError("You must specify prompt for class images.") | |
| else: | |
| # logger is not available yet | |
| if args.class_data_dir is not None: | |
| warnings.warn("You need not use --class_data_dir without --with_prior_preservation.") | |
| if args.class_prompt is not None: | |
| warnings.warn("You need not use --class_prompt without --with_prior_preservation.") | |
| return args | |
| class DreamBoothDataset(Dataset): | |
| """ | |
| A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
| It pre-processes the images. | |
| """ | |
| def __init__( | |
| self, | |
| instance_data_root, | |
| instance_prompt, | |
| class_prompt, | |
| class_data_root=None, | |
| class_num=None, | |
| size=1024, | |
| repeats=1, | |
| center_crop=False, | |
| ): | |
| self.size = size | |
| self.center_crop = center_crop | |
| self.instance_prompt = instance_prompt | |
| self.custom_instance_prompts = None | |
| self.class_prompt = class_prompt | |
| # if --dataset_name is provided or a metadata jsonl file is provided in the local --instance_data directory, | |
| # we load the training data using load_dataset | |
| if args.dataset_name is not None: | |
| try: | |
| from datasets import load_dataset | |
| except ImportError: | |
| raise ImportError( | |
| "You are trying to load your data using the datasets library. If you wish to train using custom " | |
| "captions please install the datasets library: `pip install datasets`. If you wish to load a " | |
| "local folder containing images only, specify --instance_data_dir instead." | |
| ) | |
| # Downloading and loading a dataset from the hub. | |
| # See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script | |
| dataset = load_dataset( | |
| args.dataset_name, | |
| args.dataset_config_name, | |
| cache_dir=args.cache_dir, | |
| ) | |
| # Preprocessing the datasets. | |
| column_names = dataset["train"].column_names | |
| # 6. Get the column names for input/target. | |
| if args.image_column is None: | |
| image_column = column_names[0] | |
| logger.info(f"image column defaulting to {image_column}") | |
| else: | |
| image_column = args.image_column | |
| if image_column not in column_names: | |
| raise ValueError( | |
| f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| instance_images = dataset["train"][image_column] | |
| if args.caption_column is None: | |
| logger.info( | |
| "No caption column provided, defaulting to instance_prompt for all images. If your dataset " | |
| "contains captions/prompts for the images, make sure to specify the " | |
| "column as --caption_column" | |
| ) | |
| self.custom_instance_prompts = None | |
| else: | |
| if args.caption_column not in column_names: | |
| raise ValueError( | |
| f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| custom_instance_prompts = dataset["train"][args.caption_column] | |
| # create final list of captions according to --repeats | |
| self.custom_instance_prompts = [] | |
| for caption in custom_instance_prompts: | |
| self.custom_instance_prompts.extend(itertools.repeat(caption, repeats)) | |
| else: | |
| self.instance_data_root = Path(instance_data_root) | |
| if not self.instance_data_root.exists(): | |
| raise ValueError("Instance images root doesn't exists.") | |
| instance_images = [Image.open(path) for path in list(Path(instance_data_root).iterdir())] | |
| self.custom_instance_prompts = None | |
| self.instance_images = [] | |
| for img in instance_images: | |
| self.instance_images.extend(itertools.repeat(img, repeats)) | |
| self.pixel_values = [] | |
| train_resize = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR) | |
| train_crop = transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size) | |
| train_flip = transforms.RandomHorizontalFlip(p=1.0) | |
| train_transforms = transforms.Compose( | |
| [ | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| for image in self.instance_images: | |
| image = exif_transpose(image) | |
| if not image.mode == "RGB": | |
| image = image.convert("RGB") | |
| image = train_resize(image) | |
| if args.random_flip and random.random() < 0.5: | |
| # flip | |
| image = train_flip(image) | |
| if args.center_crop: | |
| y1 = max(0, int(round((image.height - args.resolution) / 2.0))) | |
| x1 = max(0, int(round((image.width - args.resolution) / 2.0))) | |
| image = train_crop(image) | |
| else: | |
| y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) | |
| image = crop(image, y1, x1, h, w) | |
| image = train_transforms(image) | |
| self.pixel_values.append(image) | |
| self.num_instance_images = len(self.instance_images) | |
| self._length = self.num_instance_images | |
| if class_data_root is not None: | |
| self.class_data_root = Path(class_data_root) | |
| self.class_data_root.mkdir(parents=True, exist_ok=True) | |
| self.class_images_path = list(self.class_data_root.iterdir()) | |
| if class_num is not None: | |
| self.num_class_images = min(len(self.class_images_path), class_num) | |
| else: | |
| self.num_class_images = len(self.class_images_path) | |
| self._length = max(self.num_class_images, self.num_instance_images) | |
| else: | |
| self.class_data_root = None | |
| self.image_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| def __len__(self): | |
| return self._length | |
| def __getitem__(self, index): | |
| example = {} | |
| instance_image = self.pixel_values[index % self.num_instance_images] | |
| example["instance_images"] = instance_image | |
| if self.custom_instance_prompts: | |
| caption = self.custom_instance_prompts[index % self.num_instance_images] | |
| if caption: | |
| example["instance_prompt"] = caption | |
| else: | |
| example["instance_prompt"] = self.instance_prompt | |
| else: # custom prompts were provided, but length does not match size of image dataset | |
| example["instance_prompt"] = self.instance_prompt | |
| if self.class_data_root: | |
| class_image = Image.open(self.class_images_path[index % self.num_class_images]) | |
| class_image = exif_transpose(class_image) | |
| if not class_image.mode == "RGB": | |
| class_image = class_image.convert("RGB") | |
| example["class_images"] = self.image_transforms(class_image) | |
| example["class_prompt"] = self.class_prompt | |
| return example | |
| def collate_fn(examples, with_prior_preservation=False): | |
| pixel_values = [example["instance_images"] for example in examples] | |
| prompts = [example["instance_prompt"] for example in examples] | |
| # Concat class and instance examples for prior preservation. | |
| # We do this to avoid doing two forward passes. | |
| if with_prior_preservation: | |
| pixel_values += [example["class_images"] for example in examples] | |
| prompts += [example["class_prompt"] for example in examples] | |
| pixel_values = torch.stack(pixel_values) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| batch = {"pixel_values": pixel_values, "prompts": prompts} | |
| return batch | |
| class PromptDataset(Dataset): | |
| "A simple dataset to prepare the prompts to generate class images on multiple GPUs." | |
| def __init__(self, prompt, num_samples): | |
| self.prompt = prompt | |
| self.num_samples = num_samples | |
| def __len__(self): | |
| return self.num_samples | |
| def __getitem__(self, index): | |
| example = {} | |
| example["prompt"] = self.prompt | |
| example["index"] = index | |
| return example | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| kwargs_handlers=[kwargs], | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Generate class images if prior preservation is enabled. | |
| if args.with_prior_preservation: | |
| class_images_dir = Path(args.class_data_dir) | |
| if not class_images_dir.exists(): | |
| class_images_dir.mkdir(parents=True) | |
| cur_class_images = len(list(class_images_dir.iterdir())) | |
| if cur_class_images < args.num_class_images: | |
| pipeline = HiDreamImagePipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16, | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| pipeline.set_progress_bar_config(disable=True) | |
| num_new_images = args.num_class_images - cur_class_images | |
| logger.info(f"Number of class images to sample: {num_new_images}.") | |
| sample_dataset = PromptDataset(args.class_prompt, num_new_images) | |
| sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size) | |
| sample_dataloader = accelerator.prepare(sample_dataloader) | |
| pipeline.to(accelerator.device) | |
| for example in tqdm( | |
| sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process | |
| ): | |
| images = pipeline(example["prompt"]).images | |
| for i, image in enumerate(images): | |
| hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() | |
| image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
| image.save(image_filename) | |
| pipeline.to("cpu") | |
| del pipeline | |
| free_memory() | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, | |
| exist_ok=True, | |
| ).repo_id | |
| # Load the tokenizers | |
| tokenizer_one = CLIPTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| revision=args.revision, | |
| ) | |
| tokenizer_two = CLIPTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer_2", | |
| revision=args.revision, | |
| ) | |
| tokenizer_three = T5Tokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer_3", | |
| revision=args.revision, | |
| ) | |
| tokenizer_four = AutoTokenizer.from_pretrained( | |
| args.pretrained_tokenizer_4_name_or_path, | |
| revision=args.revision, | |
| ) | |
| tokenizer_four.pad_token = tokenizer_four.eos_token | |
| # import correct text encoder classes | |
| text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision | |
| ) | |
| text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" | |
| ) | |
| text_encoder_cls_three = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3" | |
| ) | |
| # For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision | |
| # as these weights are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Load scheduler and models | |
| noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="scheduler", revision=args.revision, shift=3.0 | |
| ) | |
| noise_scheduler_copy = copy.deepcopy(noise_scheduler) | |
| text_encoder_one, text_encoder_two, text_encoder_three, text_encoder_four = load_text_encoders( | |
| text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="vae", | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| quantization_config = None | |
| if args.bnb_quantization_config_path is not None: | |
| with open(args.bnb_quantization_config_path, "r") as f: | |
| config_kwargs = json.load(f) | |
| if "load_in_4bit" in config_kwargs and config_kwargs["load_in_4bit"]: | |
| config_kwargs["bnb_4bit_compute_dtype"] = weight_dtype | |
| quantization_config = BitsAndBytesConfig(**config_kwargs) | |
| transformer = HiDreamImageTransformer2DModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="transformer", | |
| revision=args.revision, | |
| variant=args.variant, | |
| quantization_config=quantization_config, | |
| torch_dtype=weight_dtype, | |
| force_inference_output=True, | |
| ) | |
| if args.bnb_quantization_config_path is not None: | |
| transformer = prepare_model_for_kbit_training(transformer, use_gradient_checkpointing=False) | |
| # We only train the additional adapter LoRA layers | |
| transformer.requires_grad_(False) | |
| vae.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| text_encoder_three.requires_grad_(False) | |
| text_encoder_four.requires_grad_(False) | |
| if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| to_kwargs = {"dtype": weight_dtype, "device": accelerator.device} if not args.offload else {"dtype": weight_dtype} | |
| # flux vae is stable in bf16 so load it in weight_dtype to reduce memory | |
| vae.to(**to_kwargs) | |
| text_encoder_one.to(**to_kwargs) | |
| text_encoder_two.to(**to_kwargs) | |
| text_encoder_three.to(**to_kwargs) | |
| text_encoder_four.to(**to_kwargs) | |
| # we never offload the transformer to CPU, so we can just use the accelerator device | |
| transformer_to_kwargs = ( | |
| {"device": accelerator.device} | |
| if args.bnb_quantization_config_path is not None | |
| else {"device": accelerator.device, "dtype": weight_dtype} | |
| ) | |
| transformer.to(**transformer_to_kwargs) | |
| # Initialize a text encoding pipeline and keep it to CPU for now. | |
| text_encoding_pipeline = HiDreamImagePipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=None, | |
| transformer=None, | |
| text_encoder=text_encoder_one, | |
| tokenizer=tokenizer_one, | |
| text_encoder_2=text_encoder_two, | |
| tokenizer_2=tokenizer_two, | |
| text_encoder_3=text_encoder_three, | |
| tokenizer_3=tokenizer_three, | |
| text_encoder_4=text_encoder_four, | |
| tokenizer_4=tokenizer_four, | |
| ) | |
| if args.gradient_checkpointing: | |
| transformer.enable_gradient_checkpointing() | |
| if args.lora_layers is not None: | |
| target_modules = [layer.strip() for layer in args.lora_layers.split(",")] | |
| else: | |
| target_modules = ["to_k", "to_q", "to_v", "to_out"] | |
| # now we will add new LoRA weights the transformer layers | |
| transformer_lora_config = LoraConfig( | |
| r=args.rank, | |
| lora_alpha=args.rank, | |
| lora_dropout=args.lora_dropout, | |
| init_lora_weights="gaussian", | |
| target_modules=target_modules, | |
| ) | |
| transformer.add_adapter(transformer_lora_config) | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| transformer_lora_layers_to_save = None | |
| for model in models: | |
| if isinstance(model, type(unwrap_model(transformer))): | |
| transformer_lora_layers_to_save = get_peft_model_state_dict(model) | |
| else: | |
| raise ValueError(f"unexpected save model: {model.__class__}") | |
| # make sure to pop weight so that corresponding model is not saved again | |
| weights.pop() | |
| HiDreamImagePipeline.save_lora_weights( | |
| output_dir, | |
| transformer_lora_layers=transformer_lora_layers_to_save, | |
| ) | |
| def load_model_hook(models, input_dir): | |
| transformer_ = None | |
| while len(models) > 0: | |
| model = models.pop() | |
| if isinstance(model, type(unwrap_model(transformer))): | |
| transformer_ = model | |
| else: | |
| raise ValueError(f"unexpected save model: {model.__class__}") | |
| lora_state_dict = HiDreamImagePipeline.lora_state_dict(input_dir) | |
| transformer_state_dict = { | |
| f"{k.replace('transformer.', '')}": v for k, v in lora_state_dict.items() if k.startswith("transformer.") | |
| } | |
| transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) | |
| incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| # Make sure the trainable params are in float32. This is again needed since the base models | |
| # are in `weight_dtype`. More details: | |
| # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 | |
| if args.mixed_precision == "fp16": | |
| models = [transformer_] | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params(models) | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32 and torch.cuda.is_available(): | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Make sure the trainable params are in float32. | |
| if args.mixed_precision == "fp16": | |
| models = [transformer] | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params(models, dtype=torch.float32) | |
| transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) | |
| # Optimization parameters | |
| transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate} | |
| params_to_optimize = [transformer_parameters_with_lr] | |
| # Optimizer creation | |
| if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"): | |
| logger.warning( | |
| f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]." | |
| "Defaulting to adamW" | |
| ) | |
| args.optimizer = "adamw" | |
| if args.use_8bit_adam and not args.optimizer.lower() == "adamw": | |
| logger.warning( | |
| f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was " | |
| f"set to {args.optimizer.lower()}" | |
| ) | |
| if args.optimizer.lower() == "adamw": | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| if args.optimizer.lower() == "prodigy": | |
| try: | |
| import prodigyopt | |
| except ImportError: | |
| raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`") | |
| optimizer_class = prodigyopt.Prodigy | |
| if args.learning_rate <= 0.1: | |
| logger.warning( | |
| "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0" | |
| ) | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| beta3=args.prodigy_beta3, | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| decouple=args.prodigy_decouple, | |
| use_bias_correction=args.prodigy_use_bias_correction, | |
| safeguard_warmup=args.prodigy_safeguard_warmup, | |
| ) | |
| # Dataset and DataLoaders creation: | |
| train_dataset = DreamBoothDataset( | |
| instance_data_root=args.instance_data_dir, | |
| instance_prompt=args.instance_prompt, | |
| class_prompt=args.class_prompt, | |
| class_data_root=args.class_data_dir if args.with_prior_preservation else None, | |
| class_num=args.num_class_images, | |
| size=args.resolution, | |
| repeats=args.repeats, | |
| center_crop=args.center_crop, | |
| ) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| batch_size=args.train_batch_size, | |
| shuffle=True, | |
| collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation), | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| def compute_text_embeddings(prompt, text_encoding_pipeline): | |
| with torch.no_grad(): | |
| ( | |
| t5_prompt_embeds, | |
| negative_prompt_embeds_t5, | |
| llama3_prompt_embeds, | |
| negative_prompt_embeds_llama3, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = text_encoding_pipeline.encode_prompt(prompt=prompt, max_sequence_length=args.max_sequence_length) | |
| return ( | |
| t5_prompt_embeds, | |
| llama3_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_prompt_embeds_t5, | |
| negative_prompt_embeds_llama3, | |
| negative_pooled_prompt_embeds, | |
| ) | |
| # If no type of tuning is done on the text_encoder and custom instance prompts are NOT | |
| # provided (i.e. the --instance_prompt is used for all images), we encode the instance prompt once to avoid | |
| # the redundant encoding. | |
| if not train_dataset.custom_instance_prompts: | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to(accelerator.device) | |
| ( | |
| instance_prompt_hidden_states_t5, | |
| instance_prompt_hidden_states_llama3, | |
| instance_pooled_prompt_embeds, | |
| _, | |
| _, | |
| _, | |
| ) = compute_text_embeddings(args.instance_prompt, text_encoding_pipeline) | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to("cpu") | |
| # Handle class prompt for prior-preservation. | |
| if args.with_prior_preservation: | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to(accelerator.device) | |
| (class_prompt_hidden_states_t5, class_prompt_hidden_states_llama3, class_pooled_prompt_embeds, _, _, _) = ( | |
| compute_text_embeddings(args.class_prompt, text_encoding_pipeline) | |
| ) | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to("cpu") | |
| validation_embeddings = {} | |
| if args.validation_prompt is not None: | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to(accelerator.device) | |
| ( | |
| validation_embeddings["prompt_embeds_t5"], | |
| validation_embeddings["prompt_embeds_llama3"], | |
| validation_embeddings["pooled_prompt_embeds"], | |
| validation_embeddings["negative_prompt_embeds_t5"], | |
| validation_embeddings["negative_prompt_embeds_llama3"], | |
| validation_embeddings["negative_pooled_prompt_embeds"], | |
| ) = compute_text_embeddings(args.validation_prompt, text_encoding_pipeline) | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to("cpu") | |
| # If custom instance prompts are NOT provided (i.e. the instance prompt is used for all images), | |
| # pack the statically computed variables appropriately here. This is so that we don't | |
| # have to pass them to the dataloader. | |
| if not train_dataset.custom_instance_prompts: | |
| t5_prompt_embeds = instance_prompt_hidden_states_t5 | |
| llama3_prompt_embeds = instance_prompt_hidden_states_llama3 | |
| pooled_prompt_embeds = instance_pooled_prompt_embeds | |
| if args.with_prior_preservation: | |
| t5_prompt_embeds = torch.cat([instance_prompt_hidden_states_t5, class_prompt_hidden_states_t5], dim=0) | |
| llama3_prompt_embeds = torch.cat( | |
| [instance_prompt_hidden_states_llama3, class_prompt_hidden_states_llama3], dim=0 | |
| ) | |
| pooled_prompt_embeds = torch.cat([pooled_prompt_embeds, class_pooled_prompt_embeds], dim=0) | |
| vae_config_scaling_factor = vae.config.scaling_factor | |
| vae_config_shift_factor = vae.config.shift_factor | |
| # if cache_latents is set to True, we encode images to latents and store them. | |
| # Similar to pre-encoding in the case of a single instance prompt, if custom prompts are provided | |
| # we encode them in advance as well. | |
| precompute_latents = args.cache_latents or train_dataset.custom_instance_prompts | |
| if precompute_latents: | |
| t5_prompt_cache = [] | |
| llama3_prompt_cache = [] | |
| pooled_prompt_cache = [] | |
| latents_cache = [] | |
| if args.offload: | |
| vae = vae.to(accelerator.device) | |
| for batch in tqdm(train_dataloader, desc="Caching latents"): | |
| with torch.no_grad(): | |
| if args.cache_latents: | |
| batch["pixel_values"] = batch["pixel_values"].to( | |
| accelerator.device, non_blocking=True, dtype=vae.dtype | |
| ) | |
| latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist) | |
| if train_dataset.custom_instance_prompts: | |
| text_encoding_pipeline = text_encoding_pipeline.to(accelerator.device) | |
| t5_prompt_embeds, llama3_prompt_embeds, pooled_prompt_embeds, _, _, _ = compute_text_embeddings( | |
| batch["prompts"], text_encoding_pipeline | |
| ) | |
| t5_prompt_cache.append(t5_prompt_embeds) | |
| llama3_prompt_cache.append(llama3_prompt_embeds) | |
| pooled_prompt_cache.append(pooled_prompt_embeds) | |
| # move back to cpu before deleting to ensure memory is freed see: https://github.com/huggingface/diffusers/issues/11376#issue-3008144624 | |
| if args.offload or args.cache_latents: | |
| vae = vae.to("cpu") | |
| if args.cache_latents: | |
| del vae | |
| # move back to cpu before deleting to ensure memory is freed see: https://github.com/huggingface/diffusers/issues/11376#issue-3008144624 | |
| text_encoding_pipeline = text_encoding_pipeline.to("cpu") | |
| del ( | |
| text_encoder_one, | |
| text_encoder_two, | |
| text_encoder_three, | |
| text_encoder_four, | |
| tokenizer_two, | |
| tokenizer_three, | |
| tokenizer_four, | |
| text_encoding_pipeline, | |
| ) | |
| free_memory() | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=args.max_train_steps * accelerator.num_processes, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| transformer, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_name = "dreambooth-hidream-lora" | |
| accelerator.init_trackers(tracker_name, config=vars(args)) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the mos recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
| sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) | |
| schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) | |
| timesteps = timesteps.to(accelerator.device) | |
| step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < n_dim: | |
| sigma = sigma.unsqueeze(-1) | |
| return sigma | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| transformer.train() | |
| for step, batch in enumerate(train_dataloader): | |
| models_to_accumulate = [transformer] | |
| prompts = batch["prompts"] | |
| with accelerator.accumulate(models_to_accumulate): | |
| # encode batch prompts when custom prompts are provided for each image - | |
| if train_dataset.custom_instance_prompts: | |
| t5_prompt_embeds = t5_prompt_cache[step] | |
| llama3_prompt_embeds = llama3_prompt_cache[step] | |
| pooled_prompt_embeds = pooled_prompt_cache[step] | |
| else: | |
| t5_prompt_embeds = t5_prompt_embeds.repeat(len(prompts), 1, 1) | |
| llama3_prompt_embeds = llama3_prompt_embeds.repeat(1, len(prompts), 1, 1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(len(prompts), 1) | |
| # Convert images to latent space | |
| if args.cache_latents: | |
| model_input = latents_cache[step].sample() | |
| else: | |
| if args.offload: | |
| vae = vae.to(accelerator.device) | |
| pixel_values = batch["pixel_values"].to(dtype=vae.dtype) | |
| model_input = vae.encode(pixel_values).latent_dist.sample() | |
| if args.offload: | |
| vae = vae.to("cpu") | |
| model_input = (model_input - vae_config_shift_factor) * vae_config_scaling_factor | |
| model_input = model_input.to(dtype=weight_dtype) | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(model_input) | |
| bsz = model_input.shape[0] | |
| # Sample a random timestep for each image | |
| # for weighting schemes where we sample timesteps non-uniformly | |
| u = compute_density_for_timestep_sampling( | |
| weighting_scheme=args.weighting_scheme, | |
| batch_size=bsz, | |
| logit_mean=args.logit_mean, | |
| logit_std=args.logit_std, | |
| mode_scale=args.mode_scale, | |
| ) | |
| indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() | |
| timesteps = noise_scheduler_copy.timesteps[indices].to(device=model_input.device) | |
| # Add noise according to flow matching. | |
| # zt = (1 - texp) * x + texp * z1 | |
| sigmas = get_sigmas(timesteps, n_dim=model_input.ndim, dtype=model_input.dtype) | |
| noisy_model_input = (1.0 - sigmas) * model_input + sigmas * noise | |
| # Predict the noise residual | |
| model_pred = transformer( | |
| hidden_states=noisy_model_input, | |
| encoder_hidden_states_t5=t5_prompt_embeds, | |
| encoder_hidden_states_llama3=llama3_prompt_embeds, | |
| pooled_embeds=pooled_prompt_embeds, | |
| timesteps=timesteps, | |
| return_dict=False, | |
| )[0] | |
| model_pred = model_pred * -1 | |
| # these weighting schemes use a uniform timestep sampling | |
| # and instead post-weight the loss | |
| weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) | |
| target = noise - model_input | |
| if args.with_prior_preservation: | |
| # Chunk the noise and model_pred into two parts and compute the loss on each part separately. | |
| model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0) | |
| target, target_prior = torch.chunk(target, 2, dim=0) | |
| # Compute prior loss | |
| prior_loss = torch.mean( | |
| (weighting.float() * (model_pred_prior.float() - target_prior.float()) ** 2).reshape( | |
| target_prior.shape[0], -1 | |
| ), | |
| 1, | |
| ) | |
| prior_loss = prior_loss.mean() | |
| # Compute regular loss. | |
| loss = torch.mean( | |
| (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), | |
| 1, | |
| ) | |
| loss = loss.mean() | |
| if args.with_prior_preservation: | |
| # Add the prior loss to the instance loss. | |
| loss = loss + args.prior_loss_weight * prior_loss | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = transformer.parameters() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if accelerator.is_main_process: | |
| if args.validation_prompt is not None and epoch % args.validation_epochs == 0: | |
| # create pipeline | |
| pipeline = HiDreamImagePipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| tokenizer=None, | |
| text_encoder=None, | |
| tokenizer_2=None, | |
| text_encoder_2=None, | |
| tokenizer_3=None, | |
| text_encoder_3=None, | |
| tokenizer_4=None, | |
| text_encoder_4=None, | |
| transformer=accelerator.unwrap_model(transformer), | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| images = log_validation( | |
| pipeline=pipeline, | |
| args=args, | |
| accelerator=accelerator, | |
| pipeline_args=validation_embeddings, | |
| torch_dtype=weight_dtype, | |
| epoch=epoch, | |
| ) | |
| del pipeline | |
| images = None | |
| free_memory() | |
| # Save the lora layers | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| transformer = unwrap_model(transformer) | |
| if args.bnb_quantization_config_path is None: | |
| if args.upcast_before_saving: | |
| transformer.to(torch.float32) | |
| else: | |
| transformer = transformer.to(weight_dtype) | |
| transformer_lora_layers = get_peft_model_state_dict(transformer) | |
| HiDreamImagePipeline.save_lora_weights( | |
| save_directory=args.output_dir, | |
| transformer_lora_layers=transformer_lora_layers, | |
| ) | |
| images = [] | |
| run_validation = (args.validation_prompt and args.num_validation_images > 0) or (args.final_validation_prompt) | |
| should_run_final_inference = not args.skip_final_inference and run_validation | |
| if should_run_final_inference: | |
| # Final inference | |
| # Load previous pipeline | |
| pipeline = HiDreamImagePipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| tokenizer=None, | |
| text_encoder=None, | |
| tokenizer_2=None, | |
| text_encoder_2=None, | |
| tokenizer_3=None, | |
| text_encoder_3=None, | |
| tokenizer_4=None, | |
| text_encoder_4=None, | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| # load attention processors | |
| pipeline.load_lora_weights(args.output_dir) | |
| # run inference | |
| images = log_validation( | |
| pipeline=pipeline, | |
| args=args, | |
| accelerator=accelerator, | |
| pipeline_args=validation_embeddings, | |
| epoch=epoch, | |
| is_final_validation=True, | |
| torch_dtype=weight_dtype, | |
| ) | |
| del pipeline | |
| free_memory() | |
| validation_prompt = args.validation_prompt if args.validation_prompt else args.final_validation_prompt | |
| save_model_card( | |
| (args.hub_model_id or Path(args.output_dir).name) if not args.push_to_hub else repo_id, | |
| images=images, | |
| base_model=args.pretrained_model_name_or_path, | |
| instance_prompt=args.instance_prompt, | |
| validation_prompt=validation_prompt, | |
| repo_folder=args.output_dir, | |
| ) | |
| if args.push_to_hub: | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| images = None | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |