Spaces:
Runtime error
Runtime error
| import argparse | |
| import logging | |
| import math | |
| import os | |
| from pathlib import Path | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import optax | |
| import torch | |
| import torch.utils.checkpoint | |
| import transformers | |
| from flax import jax_utils | |
| from flax.training import train_state | |
| from flax.training.common_utils import shard | |
| from huggingface_hub import create_repo, upload_folder | |
| from huggingface_hub.utils import insecure_hashlib | |
| from jax.experimental.compilation_cache import compilation_cache as cc | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel, set_seed | |
| from diffusers import ( | |
| FlaxAutoencoderKL, | |
| FlaxDDPMScheduler, | |
| FlaxPNDMScheduler, | |
| FlaxStableDiffusionPipeline, | |
| FlaxUNet2DConditionModel, | |
| ) | |
| from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker | |
| from diffusers.utils import check_min_version | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.34.0.dev0") | |
| # Cache compiled models across invocations of this script. | |
| cc.initialize_cache(os.path.expanduser("~/.cache/jax/compilation_cache")) | |
| logger = logging.getLogger(__name__) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained vae or vae identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--tokenizer_name", | |
| type=str, | |
| default=None, | |
| help="Pretrained tokenizer name or path if not the same as model_name", | |
| ) | |
| parser.add_argument( | |
| "--instance_data_dir", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="A folder containing the training data of instance images.", | |
| ) | |
| parser.add_argument( | |
| "--class_data_dir", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="A folder containing the training data of class images.", | |
| ) | |
| parser.add_argument( | |
| "--instance_prompt", | |
| type=str, | |
| default=None, | |
| help="The prompt with identifier specifying the instance", | |
| ) | |
| parser.add_argument( | |
| "--class_prompt", | |
| type=str, | |
| default=None, | |
| help="The prompt to specify images in the same class as provided instance images.", | |
| ) | |
| parser.add_argument( | |
| "--with_prior_preservation", | |
| default=False, | |
| action="store_true", | |
| help="Flag to add prior preservation loss.", | |
| ) | |
| parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") | |
| parser.add_argument( | |
| "--num_class_images", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Minimal class images for prior preservation loss. If there are not enough images already present in" | |
| " class_data_dir, additional images will be sampled with class_prompt." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="text-inversion-model", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--save_steps", type=int, default=None, help="Save a checkpoint every X steps.") | |
| parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument( | |
| "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=5e-6, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default="no", | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose" | |
| "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
| "and an Nvidia Ampere GPU." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| if args.instance_data_dir is None: | |
| raise ValueError("You must specify a train data directory.") | |
| if args.with_prior_preservation: | |
| if args.class_data_dir is None: | |
| raise ValueError("You must specify a data directory for class images.") | |
| if args.class_prompt is None: | |
| raise ValueError("You must specify prompt for class images.") | |
| return args | |
| class DreamBoothDataset(Dataset): | |
| """ | |
| A dataset to prepare the instance and class images with the prompts for fine-tuning the model. | |
| It pre-processes the images and the tokenizes prompts. | |
| """ | |
| def __init__( | |
| self, | |
| instance_data_root, | |
| instance_prompt, | |
| tokenizer, | |
| class_data_root=None, | |
| class_prompt=None, | |
| class_num=None, | |
| size=512, | |
| center_crop=False, | |
| ): | |
| self.size = size | |
| self.center_crop = center_crop | |
| self.tokenizer = tokenizer | |
| self.instance_data_root = Path(instance_data_root) | |
| if not self.instance_data_root.exists(): | |
| raise ValueError("Instance images root doesn't exists.") | |
| self.instance_images_path = list(Path(instance_data_root).iterdir()) | |
| self.num_instance_images = len(self.instance_images_path) | |
| self.instance_prompt = instance_prompt | |
| self._length = self.num_instance_images | |
| if class_data_root is not None: | |
| self.class_data_root = Path(class_data_root) | |
| self.class_data_root.mkdir(parents=True, exist_ok=True) | |
| self.class_images_path = list(self.class_data_root.iterdir()) | |
| if class_num is not None: | |
| self.num_class_images = min(len(self.class_images_path), class_num) | |
| else: | |
| self.num_class_images = len(self.class_images_path) | |
| self._length = max(self.num_class_images, self.num_instance_images) | |
| self.class_prompt = class_prompt | |
| else: | |
| self.class_data_root = None | |
| self.image_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| def __len__(self): | |
| return self._length | |
| def __getitem__(self, index): | |
| example = {} | |
| instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) | |
| if not instance_image.mode == "RGB": | |
| instance_image = instance_image.convert("RGB") | |
| example["instance_images"] = self.image_transforms(instance_image) | |
| example["instance_prompt_ids"] = self.tokenizer( | |
| self.instance_prompt, | |
| padding="do_not_pad", | |
| truncation=True, | |
| max_length=self.tokenizer.model_max_length, | |
| ).input_ids | |
| if self.class_data_root: | |
| class_image = Image.open(self.class_images_path[index % self.num_class_images]) | |
| if not class_image.mode == "RGB": | |
| class_image = class_image.convert("RGB") | |
| example["class_images"] = self.image_transforms(class_image) | |
| example["class_prompt_ids"] = self.tokenizer( | |
| self.class_prompt, | |
| padding="do_not_pad", | |
| truncation=True, | |
| max_length=self.tokenizer.model_max_length, | |
| ).input_ids | |
| return example | |
| class PromptDataset(Dataset): | |
| """A simple dataset to prepare the prompts to generate class images on multiple GPUs.""" | |
| def __init__(self, prompt, num_samples): | |
| self.prompt = prompt | |
| self.num_samples = num_samples | |
| def __len__(self): | |
| return self.num_samples | |
| def __getitem__(self, index): | |
| example = {} | |
| example["prompt"] = self.prompt | |
| example["index"] = index | |
| return example | |
| def get_params_to_save(params): | |
| return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) | |
| def main(): | |
| args = parse_args() | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| # Setup logging, we only want one process per machine to log things on the screen. | |
| logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) | |
| if jax.process_index() == 0: | |
| transformers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| rng = jax.random.PRNGKey(args.seed) | |
| if args.with_prior_preservation: | |
| class_images_dir = Path(args.class_data_dir) | |
| if not class_images_dir.exists(): | |
| class_images_dir.mkdir(parents=True) | |
| cur_class_images = len(list(class_images_dir.iterdir())) | |
| if cur_class_images < args.num_class_images: | |
| pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, safety_checker=None, revision=args.revision | |
| ) | |
| pipeline.set_progress_bar_config(disable=True) | |
| num_new_images = args.num_class_images - cur_class_images | |
| logger.info(f"Number of class images to sample: {num_new_images}.") | |
| sample_dataset = PromptDataset(args.class_prompt, num_new_images) | |
| total_sample_batch_size = args.sample_batch_size * jax.local_device_count() | |
| sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=total_sample_batch_size) | |
| for example in tqdm( | |
| sample_dataloader, desc="Generating class images", disable=not jax.process_index() == 0 | |
| ): | |
| prompt_ids = pipeline.prepare_inputs(example["prompt"]) | |
| prompt_ids = shard(prompt_ids) | |
| p_params = jax_utils.replicate(params) | |
| rng = jax.random.split(rng)[0] | |
| sample_rng = jax.random.split(rng, jax.device_count()) | |
| images = pipeline(prompt_ids, p_params, sample_rng, jit=True).images | |
| images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) | |
| images = pipeline.numpy_to_pil(np.array(images)) | |
| for i, image in enumerate(images): | |
| hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest() | |
| image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg" | |
| image.save(image_filename) | |
| del pipeline | |
| # Handle the repository creation | |
| if jax.process_index() == 0: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load the tokenizer and add the placeholder token as a additional special token | |
| if args.tokenizer_name: | |
| tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
| elif args.pretrained_model_name_or_path: | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision | |
| ) | |
| else: | |
| raise NotImplementedError("No tokenizer specified!") | |
| train_dataset = DreamBoothDataset( | |
| instance_data_root=args.instance_data_dir, | |
| instance_prompt=args.instance_prompt, | |
| class_data_root=args.class_data_dir if args.with_prior_preservation else None, | |
| class_prompt=args.class_prompt, | |
| class_num=args.num_class_images, | |
| tokenizer=tokenizer, | |
| size=args.resolution, | |
| center_crop=args.center_crop, | |
| ) | |
| def collate_fn(examples): | |
| input_ids = [example["instance_prompt_ids"] for example in examples] | |
| pixel_values = [example["instance_images"] for example in examples] | |
| # Concat class and instance examples for prior preservation. | |
| # We do this to avoid doing two forward passes. | |
| if args.with_prior_preservation: | |
| input_ids += [example["class_prompt_ids"] for example in examples] | |
| pixel_values += [example["class_images"] for example in examples] | |
| pixel_values = torch.stack(pixel_values) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| input_ids = tokenizer.pad( | |
| {"input_ids": input_ids}, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt" | |
| ).input_ids | |
| batch = { | |
| "input_ids": input_ids, | |
| "pixel_values": pixel_values, | |
| } | |
| batch = {k: v.numpy() for k, v in batch.items()} | |
| return batch | |
| total_train_batch_size = args.train_batch_size * jax.local_device_count() | |
| if len(train_dataset) < total_train_batch_size: | |
| raise ValueError( | |
| f"Training batch size is {total_train_batch_size}, but your dataset only contains" | |
| f" {len(train_dataset)} images. Please, use a larger dataset or reduce the effective batch size. Note that" | |
| f" there are {jax.local_device_count()} parallel devices, so your batch size can't be smaller than that." | |
| ) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, batch_size=total_train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True | |
| ) | |
| weight_dtype = jnp.float32 | |
| if args.mixed_precision == "fp16": | |
| weight_dtype = jnp.float16 | |
| elif args.mixed_precision == "bf16": | |
| weight_dtype = jnp.bfloat16 | |
| if args.pretrained_vae_name_or_path: | |
| # TODO(patil-suraj): Upload flax weights for the VAE | |
| vae_arg, vae_kwargs = (args.pretrained_vae_name_or_path, {"from_pt": True}) | |
| else: | |
| vae_arg, vae_kwargs = (args.pretrained_model_name_or_path, {"subfolder": "vae", "revision": args.revision}) | |
| # Load models and create wrapper for stable diffusion | |
| text_encoder = FlaxCLIPTextModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="text_encoder", | |
| dtype=weight_dtype, | |
| revision=args.revision, | |
| ) | |
| vae, vae_params = FlaxAutoencoderKL.from_pretrained( | |
| vae_arg, | |
| dtype=weight_dtype, | |
| **vae_kwargs, | |
| ) | |
| unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="unet", | |
| dtype=weight_dtype, | |
| revision=args.revision, | |
| ) | |
| # Optimization | |
| if args.scale_lr: | |
| args.learning_rate = args.learning_rate * total_train_batch_size | |
| constant_scheduler = optax.constant_schedule(args.learning_rate) | |
| adamw = optax.adamw( | |
| learning_rate=constant_scheduler, | |
| b1=args.adam_beta1, | |
| b2=args.adam_beta2, | |
| eps=args.adam_epsilon, | |
| weight_decay=args.adam_weight_decay, | |
| ) | |
| optimizer = optax.chain( | |
| optax.clip_by_global_norm(args.max_grad_norm), | |
| adamw, | |
| ) | |
| unet_state = train_state.TrainState.create(apply_fn=unet.__call__, params=unet_params, tx=optimizer) | |
| text_encoder_state = train_state.TrainState.create( | |
| apply_fn=text_encoder.__call__, params=text_encoder.params, tx=optimizer | |
| ) | |
| noise_scheduler = FlaxDDPMScheduler( | |
| beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 | |
| ) | |
| noise_scheduler_state = noise_scheduler.create_state() | |
| # Initialize our training | |
| train_rngs = jax.random.split(rng, jax.local_device_count()) | |
| def train_step(unet_state, text_encoder_state, vae_params, batch, train_rng): | |
| dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3) | |
| if args.train_text_encoder: | |
| params = {"text_encoder": text_encoder_state.params, "unet": unet_state.params} | |
| else: | |
| params = {"unet": unet_state.params} | |
| def compute_loss(params): | |
| # Convert images to latent space | |
| vae_outputs = vae.apply( | |
| {"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode | |
| ) | |
| latents = vae_outputs.latent_dist.sample(sample_rng) | |
| # (NHWC) -> (NCHW) | |
| latents = jnp.transpose(latents, (0, 3, 1, 2)) | |
| latents = latents * vae.config.scaling_factor | |
| # Sample noise that we'll add to the latents | |
| noise_rng, timestep_rng = jax.random.split(sample_rng) | |
| noise = jax.random.normal(noise_rng, latents.shape) | |
| # Sample a random timestep for each image | |
| bsz = latents.shape[0] | |
| timesteps = jax.random.randint( | |
| timestep_rng, | |
| (bsz,), | |
| 0, | |
| noise_scheduler.config.num_train_timesteps, | |
| ) | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) | |
| # Get the text embedding for conditioning | |
| if args.train_text_encoder: | |
| encoder_hidden_states = text_encoder_state.apply_fn( | |
| batch["input_ids"], params=params["text_encoder"], dropout_rng=dropout_rng, train=True | |
| )[0] | |
| else: | |
| encoder_hidden_states = text_encoder( | |
| batch["input_ids"], params=text_encoder_state.params, train=False | |
| )[0] | |
| # Predict the noise residual | |
| model_pred = unet.apply( | |
| {"params": params["unet"]}, noisy_latents, timesteps, encoder_hidden_states, train=True | |
| ).sample | |
| # Get the target for loss depending on the prediction type | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| if args.with_prior_preservation: | |
| # Chunk the noise and noise_pred into two parts and compute the loss on each part separately. | |
| model_pred, model_pred_prior = jnp.split(model_pred, 2, axis=0) | |
| target, target_prior = jnp.split(target, 2, axis=0) | |
| # Compute instance loss | |
| loss = (target - model_pred) ** 2 | |
| loss = loss.mean() | |
| # Compute prior loss | |
| prior_loss = (target_prior - model_pred_prior) ** 2 | |
| prior_loss = prior_loss.mean() | |
| # Add the prior loss to the instance loss. | |
| loss = loss + args.prior_loss_weight * prior_loss | |
| else: | |
| loss = (target - model_pred) ** 2 | |
| loss = loss.mean() | |
| return loss | |
| grad_fn = jax.value_and_grad(compute_loss) | |
| loss, grad = grad_fn(params) | |
| grad = jax.lax.pmean(grad, "batch") | |
| new_unet_state = unet_state.apply_gradients(grads=grad["unet"]) | |
| if args.train_text_encoder: | |
| new_text_encoder_state = text_encoder_state.apply_gradients(grads=grad["text_encoder"]) | |
| else: | |
| new_text_encoder_state = text_encoder_state | |
| metrics = {"loss": loss} | |
| metrics = jax.lax.pmean(metrics, axis_name="batch") | |
| return new_unet_state, new_text_encoder_state, metrics, new_train_rng | |
| # Create parallel version of the train step | |
| p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0, 1)) | |
| # Replicate the train state on each device | |
| unet_state = jax_utils.replicate(unet_state) | |
| text_encoder_state = jax_utils.replicate(text_encoder_state) | |
| vae_params = jax_utils.replicate(vae_params) | |
| # Train! | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader)) | |
| # Scheduler and math around the number of training steps. | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| def checkpoint(step=None): | |
| # Create the pipeline using the trained modules and save it. | |
| scheduler, _ = FlaxPNDMScheduler.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="scheduler") | |
| safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained( | |
| "CompVis/stable-diffusion-safety-checker", from_pt=True | |
| ) | |
| pipeline = FlaxStableDiffusionPipeline( | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| unet=unet, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32"), | |
| ) | |
| outdir = os.path.join(args.output_dir, str(step)) if step else args.output_dir | |
| pipeline.save_pretrained( | |
| outdir, | |
| params={ | |
| "text_encoder": get_params_to_save(text_encoder_state.params), | |
| "vae": get_params_to_save(vae_params), | |
| "unet": get_params_to_save(unet_state.params), | |
| "safety_checker": safety_checker.params, | |
| }, | |
| ) | |
| if args.push_to_hub: | |
| message = f"checkpoint-{step}" if step is not None else "End of training" | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message=message, | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| global_step = 0 | |
| epochs = tqdm(range(args.num_train_epochs), desc="Epoch ... ", position=0) | |
| for epoch in epochs: | |
| # ======================== Training ================================ | |
| train_metrics = [] | |
| steps_per_epoch = len(train_dataset) // total_train_batch_size | |
| train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) | |
| # train | |
| for batch in train_dataloader: | |
| batch = shard(batch) | |
| unet_state, text_encoder_state, train_metric, train_rngs = p_train_step( | |
| unet_state, text_encoder_state, vae_params, batch, train_rngs | |
| ) | |
| train_metrics.append(train_metric) | |
| train_step_progress_bar.update(jax.local_device_count()) | |
| global_step += 1 | |
| if jax.process_index() == 0 and args.save_steps and global_step % args.save_steps == 0: | |
| checkpoint(global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| train_metric = jax_utils.unreplicate(train_metric) | |
| train_step_progress_bar.close() | |
| epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") | |
| if jax.process_index() == 0: | |
| checkpoint() | |
| if __name__ == "__main__": | |
| main() | |