Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import sys | |
| import tempfile | |
| import safetensors | |
| sys.path.append("..") | |
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class DreamBoothLoRASD3(ExamplesTestsAccelerate): | |
| instance_data_dir = "docs/source/en/imgs" | |
| instance_prompt = "photo" | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-sd3-pipe" | |
| script_path = "examples/dreambooth/train_dreambooth_lora_sd3.py" | |
| transformer_block_idx = 0 | |
| layer_type = "attn.to_k" | |
| def test_dreambooth_lora_sd3(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
| # make sure the state_dict has the correct naming in the parameters. | |
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
| self.assertTrue(is_lora) | |
| # when not training the text encoder, all the parameters in the state dict should start | |
| # with `"transformer"` in their names. | |
| starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | |
| self.assertTrue(starts_with_transformer) | |
| def test_dreambooth_lora_text_encoder_sd3(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --train_text_encoder | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
| # make sure the state_dict has the correct naming in the parameters. | |
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
| self.assertTrue(is_lora) | |
| starts_with_expected_prefix = all( | |
| (key.startswith("transformer") or key.startswith("text_encoder")) for key in lora_state_dict.keys() | |
| ) | |
| self.assertTrue(starts_with_expected_prefix) | |
| def test_dreambooth_lora_latent_caching(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --cache_latents | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
| # make sure the state_dict has the correct naming in the parameters. | |
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
| self.assertTrue(is_lora) | |
| # when not training the text encoder, all the parameters in the state dict should start | |
| # with `"transformer"` in their names. | |
| starts_with_transformer = all(key.startswith("transformer") for key in lora_state_dict.keys()) | |
| self.assertTrue(starts_with_transformer) | |
| def test_dreambooth_lora_block(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --lora_blocks {self.transformer_block_idx} | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
| # make sure the state_dict has the correct naming in the parameters. | |
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
| self.assertTrue(is_lora) | |
| # when not training the text encoder, all the parameters in the state dict should start | |
| # with `"transformer"` in their names. | |
| # In this test, only params of transformer block 0 should be in the state dict | |
| starts_with_transformer = all( | |
| key.startswith("transformer.transformer_blocks.0") for key in lora_state_dict.keys() | |
| ) | |
| self.assertTrue(starts_with_transformer) | |
| def test_dreambooth_lora_layer(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --lora_layers {self.layer_type} | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) | |
| # make sure the state_dict has the correct naming in the parameters. | |
| lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) | |
| is_lora = all("lora" in k for k in lora_state_dict.keys()) | |
| self.assertTrue(is_lora) | |
| # In this test, only transformer params of attention layers `attn.to_k` should be in the state dict | |
| starts_with_transformer = all("attn.to_k" in key for key in lora_state_dict.keys()) | |
| self.assertTrue(starts_with_transformer) | |
| def test_dreambooth_lora_sd3_checkpointing_checkpoints_total_limit(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | |
| --instance_data_dir={self.instance_data_dir} | |
| --output_dir={tmpdir} | |
| --instance_prompt={self.instance_prompt} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=6 | |
| --checkpoints_total_limit=2 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-6"}, | |
| ) | |
| def test_dreambooth_lora_sd3_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | |
| --instance_data_dir={self.instance_data_dir} | |
| --output_dir={tmpdir} | |
| --instance_prompt={self.instance_prompt} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=4 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}) | |
| resume_run_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | |
| --instance_data_dir={self.instance_data_dir} | |
| --output_dir={tmpdir} | |
| --instance_prompt={self.instance_prompt} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=8 | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --checkpoints_total_limit=2 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) | |