Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from transformers import ( | |
| ClapAudioConfig, | |
| ClapConfig, | |
| ClapFeatureExtractor, | |
| ClapModel, | |
| ClapTextConfig, | |
| GPT2Config, | |
| GPT2LMHeadModel, | |
| RobertaTokenizer, | |
| SpeechT5HifiGan, | |
| SpeechT5HifiGanConfig, | |
| T5Config, | |
| T5EncoderModel, | |
| T5Tokenizer, | |
| ) | |
| from diffusers import ( | |
| AudioLDM2Pipeline, | |
| AudioLDM2ProjectionModel, | |
| AudioLDM2UNet2DConditionModel, | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils.testing_utils import enable_full_determinism, is_torch_version, nightly, torch_device | |
| from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class AudioLDM2PipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = AudioLDM2Pipeline | |
| params = TEXT_TO_AUDIO_PARAMS | |
| batch_params = TEXT_TO_AUDIO_BATCH_PARAMS | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "num_waveforms_per_prompt", | |
| "generator", | |
| "latents", | |
| "output_type", | |
| "return_dict", | |
| "callback", | |
| "callback_steps", | |
| ] | |
| ) | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = AudioLDM2UNet2DConditionModel( | |
| block_out_channels=(8, 16), | |
| layers_per_block=1, | |
| norm_num_groups=8, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=(8, 16), | |
| ) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[8, 16], | |
| in_channels=1, | |
| out_channels=1, | |
| norm_num_groups=8, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_branch_config = ClapTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=8, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=1, | |
| num_hidden_layers=1, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| projection_dim=8, | |
| ) | |
| audio_branch_config = ClapAudioConfig( | |
| spec_size=8, | |
| window_size=4, | |
| num_mel_bins=8, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| depths=[1, 1], | |
| num_attention_heads=[1, 1], | |
| num_hidden_layers=1, | |
| hidden_size=192, | |
| projection_dim=8, | |
| patch_size=2, | |
| patch_stride=2, | |
| patch_embed_input_channels=4, | |
| ) | |
| text_encoder_config = ClapConfig.from_text_audio_configs( | |
| text_config=text_branch_config, | |
| audio_config=audio_branch_config, | |
| projection_dim=16, | |
| ) | |
| text_encoder = ClapModel(text_encoder_config) | |
| tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77) | |
| feature_extractor = ClapFeatureExtractor.from_pretrained( | |
| "hf-internal-testing/tiny-random-ClapModel", hop_length=7900 | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_2_config = T5Config( | |
| vocab_size=32100, | |
| d_model=32, | |
| d_ff=37, | |
| d_kv=8, | |
| num_heads=1, | |
| num_layers=1, | |
| ) | |
| text_encoder_2 = T5EncoderModel(text_encoder_2_config) | |
| tokenizer_2 = T5Tokenizer.from_pretrained("hf-internal-testing/tiny-random-T5Model", model_max_length=77) | |
| torch.manual_seed(0) | |
| language_model_config = GPT2Config( | |
| n_embd=16, | |
| n_head=1, | |
| n_layer=1, | |
| vocab_size=1000, | |
| n_ctx=99, | |
| n_positions=99, | |
| ) | |
| language_model = GPT2LMHeadModel(language_model_config) | |
| language_model.config.max_new_tokens = 8 | |
| torch.manual_seed(0) | |
| projection_model = AudioLDM2ProjectionModel( | |
| text_encoder_dim=16, | |
| text_encoder_1_dim=32, | |
| langauge_model_dim=16, | |
| ) | |
| vocoder_config = SpeechT5HifiGanConfig( | |
| model_in_dim=8, | |
| sampling_rate=16000, | |
| upsample_initial_channel=16, | |
| upsample_rates=[2, 2], | |
| upsample_kernel_sizes=[4, 4], | |
| resblock_kernel_sizes=[3, 7], | |
| resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]], | |
| normalize_before=False, | |
| ) | |
| vocoder = SpeechT5HifiGan(vocoder_config) | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "feature_extractor": feature_extractor, | |
| "language_model": language_model, | |
| "projection_model": projection_model, | |
| "vocoder": vocoder, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A hammer hitting a wooden surface", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| } | |
| return inputs | |
| def test_audioldm2_ddim(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = audioldm_pipe(**inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 256 | |
| audio_slice = audio[:10] | |
| expected_slice = np.array( | |
| [ | |
| 2.602e-03, | |
| 1.729e-03, | |
| 1.863e-03, | |
| -2.219e-03, | |
| -2.656e-03, | |
| -2.017e-03, | |
| -2.648e-03, | |
| -2.115e-03, | |
| -2.502e-03, | |
| -2.081e-03, | |
| ] | |
| ) | |
| assert np.abs(audio_slice - expected_slice).max() < 1e-4 | |
| def test_audioldm2_prompt_embeds(self): | |
| components = self.get_dummy_components() | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt"] = 3 * [inputs["prompt"]] | |
| # forward | |
| output = audioldm_pipe(**inputs) | |
| audio_1 = output.audios[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 3 * [inputs.pop("prompt")] | |
| text_inputs = audioldm_pipe.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=audioldm_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs["input_ids"].to(torch_device) | |
| clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs) | |
| clap_prompt_embeds = clap_prompt_embeds[:, None, :] | |
| text_inputs = audioldm_pipe.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=True, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs["input_ids"].to(torch_device) | |
| t5_prompt_embeds = audioldm_pipe.text_encoder_2( | |
| text_inputs, | |
| ) | |
| t5_prompt_embeds = t5_prompt_embeds[0] | |
| projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0] | |
| generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8) | |
| inputs["prompt_embeds"] = t5_prompt_embeds | |
| inputs["generated_prompt_embeds"] = generated_prompt_embeds | |
| # forward | |
| output = audioldm_pipe(**inputs) | |
| audio_2 = output.audios[0] | |
| assert np.abs(audio_1 - audio_2).max() < 1e-2 | |
| def test_audioldm2_negative_prompt_embeds(self): | |
| components = self.get_dummy_components() | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| negative_prompt = 3 * ["this is a negative prompt"] | |
| inputs["negative_prompt"] = negative_prompt | |
| inputs["prompt"] = 3 * [inputs["prompt"]] | |
| # forward | |
| output = audioldm_pipe(**inputs) | |
| audio_1 = output.audios[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = 3 * [inputs.pop("prompt")] | |
| embeds = [] | |
| generated_embeds = [] | |
| for p in [prompt, negative_prompt]: | |
| text_inputs = audioldm_pipe.tokenizer( | |
| p, | |
| padding="max_length", | |
| max_length=audioldm_pipe.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs["input_ids"].to(torch_device) | |
| clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs) | |
| clap_prompt_embeds = clap_prompt_embeds[:, None, :] | |
| text_inputs = audioldm_pipe.tokenizer_2( | |
| prompt, | |
| padding="max_length", | |
| max_length=True if len(embeds) == 0 else embeds[0].shape[1], | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs["input_ids"].to(torch_device) | |
| t5_prompt_embeds = audioldm_pipe.text_encoder_2( | |
| text_inputs, | |
| ) | |
| t5_prompt_embeds = t5_prompt_embeds[0] | |
| projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0] | |
| generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8) | |
| embeds.append(t5_prompt_embeds) | |
| generated_embeds.append(generated_prompt_embeds) | |
| inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds | |
| inputs["generated_prompt_embeds"], inputs["negative_generated_prompt_embeds"] = generated_embeds | |
| # forward | |
| output = audioldm_pipe(**inputs) | |
| audio_2 = output.audios[0] | |
| assert np.abs(audio_1 - audio_2).max() < 1e-2 | |
| def test_audioldm2_negative_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| negative_prompt = "egg cracking" | |
| output = audioldm_pipe(**inputs, negative_prompt=negative_prompt) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 256 | |
| audio_slice = audio[:10] | |
| expected_slice = np.array( | |
| [0.0026, 0.0017, 0.0018, -0.0022, -0.0026, -0.002, -0.0026, -0.0021, -0.0025, -0.0021] | |
| ) | |
| assert np.abs(audio_slice - expected_slice).max() < 1e-4 | |
| def test_audioldm2_num_waveforms_per_prompt(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| components["scheduler"] = PNDMScheduler(skip_prk_steps=True) | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| prompt = "A hammer hitting a wooden surface" | |
| # test num_waveforms_per_prompt=1 (default) | |
| audios = audioldm_pipe(prompt, num_inference_steps=2).audios | |
| assert audios.shape == (1, 256) | |
| # test num_waveforms_per_prompt=1 (default) for batch of prompts | |
| batch_size = 2 | |
| audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios | |
| assert audios.shape == (batch_size, 256) | |
| # test num_waveforms_per_prompt for single prompt | |
| num_waveforms_per_prompt = 1 | |
| audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios | |
| assert audios.shape == (num_waveforms_per_prompt, 256) | |
| # test num_waveforms_per_prompt for batch of prompts | |
| batch_size = 2 | |
| audios = audioldm_pipe( | |
| [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt | |
| ).audios | |
| assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) | |
| def test_audioldm2_audio_length_in_s(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate | |
| inputs = self.get_dummy_inputs(device) | |
| output = audioldm_pipe(audio_length_in_s=0.016, **inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) / vocoder_sampling_rate == 0.016 | |
| output = audioldm_pipe(audio_length_in_s=0.032, **inputs) | |
| audio = output.audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) / vocoder_sampling_rate == 0.032 | |
| def test_audioldm2_vocoder_model_in_dim(self): | |
| components = self.get_dummy_components() | |
| audioldm_pipe = AudioLDM2Pipeline(**components) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| prompt = ["hey"] | |
| output = audioldm_pipe(prompt, num_inference_steps=1) | |
| audio_shape = output.audios.shape | |
| assert audio_shape == (1, 256) | |
| config = audioldm_pipe.vocoder.config | |
| config.model_in_dim *= 2 | |
| audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device) | |
| output = audioldm_pipe(prompt, num_inference_steps=1) | |
| audio_shape = output.audios.shape | |
| # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram | |
| assert audio_shape == (1, 256) | |
| def test_attention_slicing_forward_pass(self): | |
| self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| pass | |
| def test_dict_tuple_outputs_equivalent(self): | |
| # increase tolerance from 1e-4 -> 3e-4 to account for large composite model | |
| super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-4) | |
| def test_inference_batch_single_identical(self): | |
| # increase tolerance from 1e-4 -> 2e-4 to account for large composite model | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-4) | |
| def test_save_load_local(self): | |
| # increase tolerance from 1e-4 -> 2e-4 to account for large composite model | |
| super().test_save_load_local(expected_max_difference=2e-4) | |
| def test_save_load_optional_components(self): | |
| # increase tolerance from 1e-4 -> 2e-4 to account for large composite model | |
| super().test_save_load_optional_components(expected_max_difference=2e-4) | |
| def test_to_dtype(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| # The method component.dtype returns the dtype of the first parameter registered in the model, not the | |
| # dtype of the entire model. In the case of CLAP, the first parameter is a float64 constant (logit scale) | |
| model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")} | |
| # Without the logit scale parameters, everything is float32 | |
| model_dtypes.pop("text_encoder") | |
| self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values())) | |
| # the CLAP sub-models are float32 | |
| model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype | |
| self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values())) | |
| # Once we send to fp16, all params are in half-precision, including the logit scale | |
| pipe.to(dtype=torch.float16) | |
| model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")} | |
| self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values())) | |
| def test_sequential_cpu_offload_forward_pass(self): | |
| pass | |
| def test_encode_prompt_works_in_isolation(self): | |
| pass | |
| def test_sequential_offload_forward_pass_twice(self): | |
| pass | |
| def test_cpu_offload_forward_pass_twice(self): | |
| pass | |
| def test_model_cpu_offload_forward_pass(self): | |
| pass | |
| class AudioLDM2PipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
| generator = torch.Generator(device=generator_device).manual_seed(seed) | |
| latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) | |
| latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
| inputs = { | |
| "prompt": "A hammer hitting a wooden surface", | |
| "latents": latents, | |
| "generator": generator, | |
| "num_inference_steps": 3, | |
| "guidance_scale": 2.5, | |
| } | |
| return inputs | |
| def get_inputs_tts(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
| generator = torch.Generator(device=generator_device).manual_seed(seed) | |
| latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16)) | |
| latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
| inputs = { | |
| "prompt": "A men saying", | |
| "transcription": "hello my name is John", | |
| "latents": latents, | |
| "generator": generator, | |
| "num_inference_steps": 3, | |
| "guidance_scale": 2.5, | |
| } | |
| return inputs | |
| def test_audioldm2(self): | |
| audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2") | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| inputs["num_inference_steps"] = 25 | |
| audio = audioldm_pipe(**inputs).audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 81952 | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[17275:17285] | |
| expected_slice = np.array([0.0791, 0.0666, 0.1158, 0.1227, 0.1171, -0.2880, -0.1940, -0.0283, -0.0126, 0.1127]) | |
| max_diff = np.abs(expected_slice - audio_slice).max() | |
| assert max_diff < 1e-3 | |
| def test_audioldm2_lms(self): | |
| audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2") | |
| audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| audio = audioldm_pipe(**inputs).audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 81952 | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[31390:31400] | |
| expected_slice = np.array( | |
| [-0.1318, -0.0577, 0.0446, -0.0573, 0.0659, 0.1074, -0.2600, 0.0080, -0.2190, -0.4301] | |
| ) | |
| max_diff = np.abs(expected_slice - audio_slice).max() | |
| assert max_diff < 1e-3 | |
| def test_audioldm2_large(self): | |
| audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large") | |
| audioldm_pipe = audioldm_pipe.to(torch_device) | |
| audioldm_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| audio = audioldm_pipe(**inputs).audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 81952 | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[8825:8835] | |
| expected_slice = np.array( | |
| [-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244] | |
| ) | |
| max_diff = np.abs(expected_slice - audio_slice).max() | |
| assert max_diff < 1e-3 | |
| def test_audioldm2_tts(self): | |
| audioldm_tts_pipe = AudioLDM2Pipeline.from_pretrained("anhnct/audioldm2_gigaspeech") | |
| audioldm_tts_pipe = audioldm_tts_pipe.to(torch_device) | |
| audioldm_tts_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs_tts(torch_device) | |
| audio = audioldm_tts_pipe(**inputs).audios[0] | |
| assert audio.ndim == 1 | |
| assert len(audio) == 81952 | |
| # check the portion of the generated audio with the largest dynamic range (reduces flakiness) | |
| audio_slice = audio[8825:8835] | |
| expected_slice = np.array( | |
| [-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244] | |
| ) | |
| max_diff = np.abs(expected_slice - audio_slice).max() | |
| assert max_diff < 1e-3 | |