Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2023 The HuggingFace Inc. team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| import math | |
| import os | |
| import shutil | |
| import time | |
| from pathlib import Path | |
| import accelerate | |
| import numpy as np | |
| import PIL | |
| import PIL.Image | |
| import timm | |
| import torch | |
| import torch.nn.functional as F | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedType, ProjectConfiguration, set_seed | |
| from datasets import load_dataset | |
| from discriminator import Discriminator | |
| from huggingface_hub import create_repo | |
| from packaging import version | |
| from PIL import Image | |
| from timm.data import resolve_data_config | |
| from timm.data.transforms_factory import create_transform | |
| from torchvision import transforms | |
| from tqdm import tqdm | |
| from diffusers import VQModel | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import EMAModel | |
| from diffusers.utils import check_min_version, is_wandb_available | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.34.0.dev0") | |
| logger = get_logger(__name__, log_level="INFO") | |
| class AverageMeter(object): | |
| """Computes and stores the average and current value""" | |
| def __init__(self): | |
| self.reset() | |
| def reset(self): | |
| self.val = 0 | |
| self.avg = 0 | |
| self.sum = 0 | |
| self.count = 0 | |
| def update(self, val, n=1): | |
| self.val = val | |
| self.sum += val * n | |
| self.count += n | |
| self.avg = self.sum / self.count | |
| def _map_layer_to_idx(backbone, layers, offset=0): | |
| """Maps set of layer names to indices of model. Ported from anomalib | |
| Returns: | |
| Feature map extracted from the CNN | |
| """ | |
| idx = [] | |
| features = timm.create_model( | |
| backbone, | |
| pretrained=False, | |
| features_only=False, | |
| exportable=True, | |
| ) | |
| for i in layers: | |
| try: | |
| idx.append(list(dict(features.named_children()).keys()).index(i) - offset) | |
| except ValueError: | |
| raise ValueError( | |
| f"Layer {i} not found in model {backbone}. Select layer from {list(dict(features.named_children()).keys())}. The network architecture is {features}" | |
| ) | |
| return idx | |
| def get_perceptual_loss(pixel_values, fmap, timm_model, timm_model_resolution, timm_model_normalization): | |
| img_timm_model_input = timm_model_normalization(F.interpolate(pixel_values, timm_model_resolution)) | |
| fmap_timm_model_input = timm_model_normalization(F.interpolate(fmap, timm_model_resolution)) | |
| if pixel_values.shape[1] == 1: | |
| # handle grayscale for timm_model | |
| img_timm_model_input, fmap_timm_model_input = ( | |
| t.repeat(1, 3, 1, 1) for t in (img_timm_model_input, fmap_timm_model_input) | |
| ) | |
| img_timm_model_feats = timm_model(img_timm_model_input) | |
| recon_timm_model_feats = timm_model(fmap_timm_model_input) | |
| perceptual_loss = F.mse_loss(img_timm_model_feats[0], recon_timm_model_feats[0]) | |
| for i in range(1, len(img_timm_model_feats)): | |
| perceptual_loss += F.mse_loss(img_timm_model_feats[i], recon_timm_model_feats[i]) | |
| perceptual_loss /= len(img_timm_model_feats) | |
| return perceptual_loss | |
| def grad_layer_wrt_loss(loss, layer): | |
| return torch.autograd.grad( | |
| outputs=loss, | |
| inputs=layer, | |
| grad_outputs=torch.ones_like(loss), | |
| retain_graph=True, | |
| )[0].detach() | |
| def gradient_penalty(images, output, weight=10): | |
| gradients = torch.autograd.grad( | |
| outputs=output, | |
| inputs=images, | |
| grad_outputs=torch.ones(output.size(), device=images.device), | |
| create_graph=True, | |
| retain_graph=True, | |
| only_inputs=True, | |
| )[0] | |
| bsz = gradients.shape[0] | |
| gradients = torch.reshape(gradients, (bsz, -1)) | |
| return weight * ((gradients.norm(2, dim=1) - 1) ** 2).mean() | |
| def log_validation(model, args, validation_transform, accelerator, global_step): | |
| logger.info("Generating images...") | |
| dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| dtype = torch.bfloat16 | |
| original_images = [] | |
| for image_path in args.validation_images: | |
| image = PIL.Image.open(image_path) | |
| if not image.mode == "RGB": | |
| image = image.convert("RGB") | |
| image = validation_transform(image).to(accelerator.device, dtype=dtype) | |
| original_images.append(image[None]) | |
| # Generate images | |
| model.eval() | |
| images = [] | |
| for original_image in original_images: | |
| image = accelerator.unwrap_model(model)(original_image).sample | |
| images.append(image) | |
| model.train() | |
| original_images = torch.cat(original_images, dim=0) | |
| images = torch.cat(images, dim=0) | |
| # Convert to PIL images | |
| images = torch.clamp(images, 0.0, 1.0) | |
| original_images = torch.clamp(original_images, 0.0, 1.0) | |
| images *= 255.0 | |
| original_images *= 255.0 | |
| images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| original_images = original_images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8) | |
| images = np.concatenate([original_images, images], axis=2) | |
| images = [Image.fromarray(image) for image in images] | |
| # Log images | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log( | |
| { | |
| "validation": [ | |
| wandb.Image(image, caption=f"{i}: Original, Generated") for i, image in enumerate(images) | |
| ] | |
| }, | |
| step=global_step, | |
| ) | |
| torch.cuda.empty_cache() | |
| return images | |
| def log_grad_norm(model, accelerator, global_step): | |
| for name, param in model.named_parameters(): | |
| if param.grad is not None: | |
| grads = param.grad.detach().data | |
| grad_norm = (grads.norm(p=2) / grads.numel()).item() | |
| accelerator.log({"grad_norm/" + name: grad_norm}, step=global_step) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--log_grad_norm_steps", | |
| type=int, | |
| default=500, | |
| help=("Print logs of gradient norms every X steps."), | |
| ) | |
| parser.add_argument( | |
| "--log_steps", | |
| type=int, | |
| default=50, | |
| help=("Print logs every X steps."), | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Run validation every X steps. Validation consists of running reconstruction on images in" | |
| " `args.validation_images` and logging the reconstructed images." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--vae_loss", | |
| type=str, | |
| default="l2", | |
| help="The loss function for vae reconstruction loss.", | |
| ) | |
| parser.add_argument( | |
| "--timm_model_offset", | |
| type=int, | |
| default=0, | |
| help="Offset of timm layers to indices.", | |
| ) | |
| parser.add_argument( | |
| "--timm_model_layers", | |
| type=str, | |
| default="head", | |
| help="The layers to get output from in the timm model.", | |
| ) | |
| parser.add_argument( | |
| "--timm_model_backend", | |
| type=str, | |
| default="vgg19", | |
| help="Timm model used to get the lpips loss", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--model_config_name_or_path", | |
| type=str, | |
| default=None, | |
| help="The config of the Vq model to train, leave as None to use standard Vq model configuration.", | |
| ) | |
| parser.add_argument( | |
| "--discriminator_config_name_or_path", | |
| type=str, | |
| default=None, | |
| help="The config of the discriminator model to train, leave as None to use standard Vq model configuration.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing an image." | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_images", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=("A set of validation images evaluated every `--validation_steps` and logged to `--report_to`."), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="vqgan-output", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=512, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| action="store_true", | |
| help="whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=100) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--discr_learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--discr_lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
| parser.add_argument( | |
| "--non_ema_revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help=( | |
| "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" | |
| " remote repository specified with --pretrained_model_name_or_path." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--prediction_type", | |
| type=str, | |
| default=None, | |
| help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediciton_type` is chosen.", | |
| ) | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="vqgan-training", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| # Sanity checks | |
| if args.dataset_name is None and args.train_data_dir is None: | |
| raise ValueError("Need either a dataset name or a training folder.") | |
| # default to using the same revision for the non-ema model if not specified | |
| if args.non_ema_revision is None: | |
| args.non_ema_revision = args.revision | |
| return args | |
| def main(): | |
| ######################### | |
| # SETUP Accelerator # | |
| ######################### | |
| args = parse_args() | |
| # Enable TF32 on Ampere GPUs | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.benchmark = True | |
| torch.backends.cudnn.deterministic = False | |
| logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| if accelerator.distributed_type == DistributedType.DEEPSPEED: | |
| accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size | |
| ##################################### | |
| # SETUP LOGGING, SEED and CONFIG # | |
| ##################################### | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| tracker_config.pop("validation_images") | |
| accelerator.init_trackers(args.tracker_project_name, tracker_config) | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| ######################### | |
| # MODELS and OPTIMIZER # | |
| ######################### | |
| logger.info("Loading models and optimizer") | |
| if args.model_config_name_or_path is None and args.pretrained_model_name_or_path is None: | |
| # Taken from config of movq at kandinsky-community/kandinsky-2-2-decoder but without the attention layers | |
| model = VQModel( | |
| act_fn="silu", | |
| block_out_channels=[ | |
| 128, | |
| 256, | |
| 512, | |
| ], | |
| down_block_types=[ | |
| "DownEncoderBlock2D", | |
| "DownEncoderBlock2D", | |
| "DownEncoderBlock2D", | |
| ], | |
| in_channels=3, | |
| latent_channels=4, | |
| layers_per_block=2, | |
| norm_num_groups=32, | |
| norm_type="spatial", | |
| num_vq_embeddings=16384, | |
| out_channels=3, | |
| sample_size=32, | |
| scaling_factor=0.18215, | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| vq_embed_dim=4, | |
| ) | |
| elif args.pretrained_model_name_or_path is not None: | |
| model = VQModel.from_pretrained(args.pretrained_model_name_or_path) | |
| else: | |
| config = VQModel.load_config(args.model_config_name_or_path) | |
| model = VQModel.from_config(config) | |
| if args.use_ema: | |
| ema_model = EMAModel(model.parameters(), model_cls=VQModel, model_config=model.config) | |
| if args.discriminator_config_name_or_path is None: | |
| discriminator = Discriminator() | |
| else: | |
| config = Discriminator.load_config(args.discriminator_config_name_or_path) | |
| discriminator = Discriminator.from_config(config) | |
| idx = _map_layer_to_idx(args.timm_model_backend, args.timm_model_layers.split("|"), args.timm_model_offset) | |
| timm_model = timm.create_model( | |
| args.timm_model_backend, | |
| pretrained=True, | |
| features_only=True, | |
| exportable=True, | |
| out_indices=idx, | |
| ) | |
| timm_model = timm_model.to(accelerator.device) | |
| timm_model.requires_grad = False | |
| timm_model.eval() | |
| timm_transform = create_transform(**resolve_data_config(timm_model.pretrained_cfg, model=timm_model)) | |
| try: | |
| # Gets the resolution of the timm transformation after centercrop | |
| timm_centercrop_transform = timm_transform.transforms[1] | |
| assert isinstance(timm_centercrop_transform, transforms.CenterCrop), ( | |
| f"Timm model {timm_model} is currently incompatible with this script. Try vgg19." | |
| ) | |
| timm_model_resolution = timm_centercrop_transform.size[0] | |
| # Gets final normalization | |
| timm_model_normalization = timm_transform.transforms[-1] | |
| assert isinstance(timm_model_normalization, transforms.Normalize), ( | |
| f"Timm model {timm_model} is currently incompatible with this script. Try vgg19." | |
| ) | |
| except AssertionError as e: | |
| raise NotImplementedError(e) | |
| # Enable flash attention if asked | |
| if args.enable_xformers_memory_efficient_attention: | |
| model.enable_xformers_memory_efficient_attention() | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| if args.use_ema: | |
| ema_model.save_pretrained(os.path.join(output_dir, "vqmodel_ema")) | |
| vqmodel = models[0] | |
| discriminator = models[1] | |
| vqmodel.save_pretrained(os.path.join(output_dir, "vqmodel")) | |
| discriminator.save_pretrained(os.path.join(output_dir, "discriminator")) | |
| weights.pop() | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| if args.use_ema: | |
| load_model = EMAModel.from_pretrained(os.path.join(input_dir, "vqmodel_ema"), VQModel) | |
| ema_model.load_state_dict(load_model.state_dict()) | |
| ema_model.to(accelerator.device) | |
| del load_model | |
| discriminator = models.pop() | |
| load_model = Discriminator.from_pretrained(input_dir, subfolder="discriminator") | |
| discriminator.register_to_config(**load_model.config) | |
| discriminator.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| vqmodel = models.pop() | |
| load_model = VQModel.from_pretrained(input_dir, subfolder="vqmodel") | |
| vqmodel.register_to_config(**load_model.config) | |
| vqmodel.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| learning_rate = args.learning_rate | |
| if args.scale_lr: | |
| learning_rate = ( | |
| learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| ) | |
| # Initialize the optimizer | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" | |
| ) | |
| optimizer_cls = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_cls = torch.optim.AdamW | |
| optimizer = optimizer_cls( | |
| list(model.parameters()), | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| discr_optimizer = optimizer_cls( | |
| list(discriminator.parameters()), | |
| lr=args.discr_learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| ################################## | |
| # DATLOADER and LR-SCHEDULER # | |
| ################################# | |
| logger.info("Creating dataloaders and lr_scheduler") | |
| args.train_batch_size * accelerator.num_processes | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| # DataLoaders creation: | |
| if args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| dataset = load_dataset( | |
| args.dataset_name, | |
| args.dataset_config_name, | |
| cache_dir=args.cache_dir, | |
| data_dir=args.train_data_dir, | |
| ) | |
| else: | |
| data_files = {} | |
| if args.train_data_dir is not None: | |
| data_files["train"] = os.path.join(args.train_data_dir, "**") | |
| dataset = load_dataset( | |
| "imagefolder", | |
| data_files=data_files, | |
| cache_dir=args.cache_dir, | |
| ) | |
| # See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| column_names = dataset["train"].column_names | |
| # 6. Get the column names for input/target. | |
| assert args.image_column is not None | |
| image_column = args.image_column | |
| if image_column not in column_names: | |
| raise ValueError(f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}") | |
| # Preprocessing the datasets. | |
| train_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
| transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), | |
| transforms.ToTensor(), | |
| ] | |
| ) | |
| validation_transform = transforms.Compose( | |
| [ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.ToTensor(), | |
| ] | |
| ) | |
| def preprocess_train(examples): | |
| images = [image.convert("RGB") for image in examples[image_column]] | |
| examples["pixel_values"] = [train_transforms(image) for image in images] | |
| return examples | |
| with accelerator.main_process_first(): | |
| if args.max_train_samples is not None: | |
| dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
| train_dataset = dataset["train"].with_transform(preprocess_train) | |
| def collate_fn(examples): | |
| pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| return {"pixel_values": pixel_values} | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_training_steps=args.max_train_steps, | |
| num_warmup_steps=args.lr_warmup_steps, | |
| ) | |
| discr_lr_scheduler = get_scheduler( | |
| args.discr_lr_scheduler, | |
| optimizer=discr_optimizer, | |
| num_training_steps=args.max_train_steps, | |
| num_warmup_steps=args.lr_warmup_steps, | |
| ) | |
| # Prepare everything with accelerator | |
| logger.info("Preparing model, optimizer and dataloaders") | |
| # The dataloader are already aware of distributed training, so we don't need to prepare them. | |
| model, discriminator, optimizer, discr_optimizer, lr_scheduler, discr_lr_scheduler = accelerator.prepare( | |
| model, discriminator, optimizer, discr_optimizer, lr_scheduler, discr_lr_scheduler | |
| ) | |
| if args.use_ema: | |
| ema_model.to(accelerator.device) | |
| # Train! | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # Potentially load in the weights and states from a previous save | |
| resume_from_checkpoint = args.resume_from_checkpoint | |
| if resume_from_checkpoint: | |
| if resume_from_checkpoint != "latest": | |
| path = resume_from_checkpoint | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| path = os.path.join(args.output_dir, path) | |
| if path is None: | |
| accelerator.print(f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run.") | |
| resume_from_checkpoint = None | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(path) | |
| accelerator.wait_for_everyone() | |
| global_step = int(os.path.basename(path).split("-")[1]) | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| batch_time_m = AverageMeter() | |
| data_time_m = AverageMeter() | |
| end = time.time() | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| # As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to | |
| # reuse the same training loop with other datasets/loaders. | |
| avg_gen_loss, avg_discr_loss = None, None | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| model.train() | |
| discriminator.train() | |
| for i, batch in enumerate(train_dataloader): | |
| pixel_values = batch["pixel_values"] | |
| pixel_values = pixel_values.to(accelerator.device, non_blocking=True) | |
| data_time_m.update(time.time() - end) | |
| generator_step = ((i // args.gradient_accumulation_steps) % 2) == 0 | |
| # Train Step | |
| # The behavior of accelerator.accumulate is to | |
| # 1. Check if gradients are synced(reached gradient-accumulation_steps) | |
| # 2. If so sync gradients by stopping the not syncing process | |
| if generator_step: | |
| optimizer.zero_grad(set_to_none=True) | |
| else: | |
| discr_optimizer.zero_grad(set_to_none=True) | |
| # encode images to the latent space and get the commit loss from vq tokenization | |
| # Return commit loss | |
| fmap, commit_loss = model(pixel_values, return_dict=False) | |
| if generator_step: | |
| with accelerator.accumulate(model): | |
| # reconstruction loss. Pixel level differences between input vs output | |
| if args.vae_loss == "l2": | |
| loss = F.mse_loss(pixel_values, fmap) | |
| else: | |
| loss = F.l1_loss(pixel_values, fmap) | |
| # perceptual loss. The high level feature mean squared error loss | |
| perceptual_loss = get_perceptual_loss( | |
| pixel_values, | |
| fmap, | |
| timm_model, | |
| timm_model_resolution=timm_model_resolution, | |
| timm_model_normalization=timm_model_normalization, | |
| ) | |
| # generator loss | |
| gen_loss = -discriminator(fmap).mean() | |
| last_dec_layer = accelerator.unwrap_model(model).decoder.conv_out.weight | |
| norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(perceptual_loss, last_dec_layer).norm(p=2) | |
| norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_dec_layer).norm(p=2) | |
| adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min=1e-8) | |
| adaptive_weight = adaptive_weight.clamp(max=1e4) | |
| loss += commit_loss | |
| loss += perceptual_loss | |
| loss += adaptive_weight * gen_loss | |
| # Gather the losses across all processes for logging (if we use distributed training). | |
| avg_gen_loss = accelerator.gather(loss.repeat(args.train_batch_size)).float().mean() | |
| accelerator.backward(loss) | |
| if args.max_grad_norm is not None and accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| # log gradient norm before zeroing it | |
| if ( | |
| accelerator.sync_gradients | |
| and global_step % args.log_grad_norm_steps == 0 | |
| and accelerator.is_main_process | |
| ): | |
| log_grad_norm(model, accelerator, global_step) | |
| else: | |
| # Return discriminator loss | |
| with accelerator.accumulate(discriminator): | |
| fmap.detach_() | |
| pixel_values.requires_grad_() | |
| real = discriminator(pixel_values) | |
| fake = discriminator(fmap) | |
| loss = (F.relu(1 + fake) + F.relu(1 - real)).mean() | |
| gp = gradient_penalty(pixel_values, real) | |
| loss += gp | |
| avg_discr_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
| accelerator.backward(loss) | |
| if args.max_grad_norm is not None and accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(discriminator.parameters(), args.max_grad_norm) | |
| discr_optimizer.step() | |
| discr_lr_scheduler.step() | |
| if ( | |
| accelerator.sync_gradients | |
| and global_step % args.log_grad_norm_steps == 0 | |
| and accelerator.is_main_process | |
| ): | |
| log_grad_norm(discriminator, accelerator, global_step) | |
| batch_time_m.update(time.time() - end) | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| global_step += 1 | |
| progress_bar.update(1) | |
| if args.use_ema: | |
| ema_model.step(model.parameters()) | |
| if accelerator.sync_gradients and not generator_step and accelerator.is_main_process: | |
| # wait for both generator and discriminator to settle | |
| # Log metrics | |
| if global_step % args.log_steps == 0: | |
| samples_per_second_per_gpu = ( | |
| args.gradient_accumulation_steps * args.train_batch_size / batch_time_m.val | |
| ) | |
| logs = { | |
| "step_discr_loss": avg_discr_loss.item(), | |
| "lr": lr_scheduler.get_last_lr()[0], | |
| "samples/sec/gpu": samples_per_second_per_gpu, | |
| "data_time": data_time_m.val, | |
| "batch_time": batch_time_m.val, | |
| } | |
| if avg_gen_loss is not None: | |
| logs["step_gen_loss"] = avg_gen_loss.item() | |
| accelerator.log(logs, step=global_step) | |
| # resetting batch / data time meters per log window | |
| batch_time_m.reset() | |
| data_time_m.reset() | |
| # Save model checkpoint | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| # Generate images | |
| if global_step % args.validation_steps == 0: | |
| if args.use_ema: | |
| # Store the VQGAN parameters temporarily and load the EMA parameters to perform inference. | |
| ema_model.store(model.parameters()) | |
| ema_model.copy_to(model.parameters()) | |
| log_validation(model, args, validation_transform, accelerator, global_step) | |
| if args.use_ema: | |
| # Switch back to the original VQGAN parameters. | |
| ema_model.restore(model.parameters()) | |
| end = time.time() | |
| # Stop training if max steps is reached | |
| if global_step >= args.max_train_steps: | |
| break | |
| # End for | |
| accelerator.wait_for_everyone() | |
| # Save the final trained checkpoint | |
| if accelerator.is_main_process: | |
| model = accelerator.unwrap_model(model) | |
| discriminator = accelerator.unwrap_model(discriminator) | |
| if args.use_ema: | |
| ema_model.copy_to(model.parameters()) | |
| model.save_pretrained(os.path.join(args.output_dir, "vqmodel")) | |
| discriminator.save_pretrained(os.path.join(args.output_dir, "discriminator")) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| main() | |