Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| import argparse | |
| import copy | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| import accelerate | |
| import numpy as np | |
| import torch | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedType, ProjectConfiguration, set_seed | |
| from datasets import load_dataset | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from peft import LoraConfig, set_peft_model_state_dict | |
| from peft.utils import get_peft_model_state_dict | |
| from PIL import Image | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| import diffusers | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxTransformer2DModel | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import ( | |
| cast_training_params, | |
| compute_density_for_timestep_sampling, | |
| compute_loss_weighting_for_sd3, | |
| free_memory, | |
| ) | |
| from diffusers.utils import check_min_version, is_wandb_available, load_image, make_image_grid | |
| from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| if is_wandb_available(): | |
| import wandb | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.34.0.dev0") | |
| logger = get_logger(__name__) | |
| NORM_LAYER_PREFIXES = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"] | |
| def encode_images(pixels: torch.Tensor, vae: torch.nn.Module, weight_dtype): | |
| pixel_latents = vae.encode(pixels.to(vae.dtype)).latent_dist.sample() | |
| pixel_latents = (pixel_latents - vae.config.shift_factor) * vae.config.scaling_factor | |
| return pixel_latents.to(weight_dtype) | |
| def log_validation(flux_transformer, args, accelerator, weight_dtype, step, is_final_validation=False): | |
| logger.info("Running validation... ") | |
| if not is_final_validation: | |
| flux_transformer = accelerator.unwrap_model(flux_transformer) | |
| pipeline = FluxControlPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| transformer=flux_transformer, | |
| torch_dtype=weight_dtype, | |
| ) | |
| else: | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="transformer", torch_dtype=weight_dtype | |
| ) | |
| initial_channels = transformer.config.in_channels | |
| pipeline = FluxControlPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| transformer=transformer, | |
| torch_dtype=weight_dtype, | |
| ) | |
| pipeline.load_lora_weights(args.output_dir) | |
| assert pipeline.transformer.config.in_channels == initial_channels * 2, ( | |
| f"{pipeline.transformer.config.in_channels=}" | |
| ) | |
| pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| if args.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| if len(args.validation_image) == len(args.validation_prompt): | |
| validation_images = args.validation_image | |
| validation_prompts = args.validation_prompt | |
| elif len(args.validation_image) == 1: | |
| validation_images = args.validation_image * len(args.validation_prompt) | |
| validation_prompts = args.validation_prompt | |
| elif len(args.validation_prompt) == 1: | |
| validation_images = args.validation_image | |
| validation_prompts = args.validation_prompt * len(args.validation_image) | |
| else: | |
| raise ValueError( | |
| "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" | |
| ) | |
| image_logs = [] | |
| if is_final_validation or torch.backends.mps.is_available(): | |
| autocast_ctx = nullcontext() | |
| else: | |
| autocast_ctx = torch.autocast(accelerator.device.type, weight_dtype) | |
| for validation_prompt, validation_image in zip(validation_prompts, validation_images): | |
| validation_image = load_image(validation_image) | |
| # maybe need to inference on 1024 to get a good image | |
| validation_image = validation_image.resize((args.resolution, args.resolution)) | |
| images = [] | |
| for _ in range(args.num_validation_images): | |
| with autocast_ctx: | |
| image = pipeline( | |
| prompt=validation_prompt, | |
| control_image=validation_image, | |
| num_inference_steps=50, | |
| guidance_scale=args.guidance_scale, | |
| generator=generator, | |
| max_sequence_length=512, | |
| height=args.resolution, | |
| width=args.resolution, | |
| ).images[0] | |
| image = image.resize((args.resolution, args.resolution)) | |
| images.append(image) | |
| image_logs.append( | |
| {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} | |
| ) | |
| tracker_key = "test" if is_final_validation else "validation" | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images = [] | |
| formatted_images.append(np.asarray(validation_image)) | |
| for image in images: | |
| formatted_images.append(np.asarray(image)) | |
| formatted_images = np.stack(formatted_images) | |
| tracker.writer.add_images(validation_prompt, formatted_images, step, dataformats="NHWC") | |
| elif tracker.name == "wandb": | |
| formatted_images = [] | |
| for log in image_logs: | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| formatted_images.append(wandb.Image(validation_image, caption="Conditioning")) | |
| for image in images: | |
| image = wandb.Image(image, caption=validation_prompt) | |
| formatted_images.append(image) | |
| tracker.log({tracker_key: formatted_images}) | |
| else: | |
| logger.warning(f"image logging not implemented for {tracker.name}") | |
| del pipeline | |
| free_memory() | |
| return image_logs | |
| def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): | |
| img_str = "" | |
| if image_logs is not None: | |
| img_str = "You can find some example images below.\n\n" | |
| for i, log in enumerate(image_logs): | |
| images = log["images"] | |
| validation_prompt = log["validation_prompt"] | |
| validation_image = log["validation_image"] | |
| validation_image.save(os.path.join(repo_folder, "image_control.png")) | |
| img_str += f"prompt: {validation_prompt}\n" | |
| images = [validation_image] + images | |
| make_image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) | |
| img_str += f"\n" | |
| model_description = f""" | |
| # control-lora-{repo_id} | |
| These are Control LoRA weights trained on {base_model} with new type of conditioning. | |
| {img_str} | |
| ## License | |
| Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) | |
| """ | |
| model_card = load_or_create_model_card( | |
| repo_id_or_path=repo_id, | |
| from_training=True, | |
| license="other", | |
| base_model=base_model, | |
| model_description=model_description, | |
| inference=True, | |
| ) | |
| tags = [ | |
| "flux", | |
| "flux-diffusers", | |
| "text-to-image", | |
| "diffusers", | |
| "control-lora", | |
| "diffusers-training", | |
| "lora", | |
| ] | |
| model_card = populate_model_card(model_card, tags=tags) | |
| model_card.save(os.path.join(repo_folder, "README.md")) | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a Control LoRA training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="control-lora", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=1024, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=1) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. " | |
| "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference." | |
| "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components." | |
| "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step" | |
| "instructions." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--proportion_empty_prompts", | |
| type=float, | |
| default=0, | |
| help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
| ) | |
| parser.add_argument( | |
| "--rank", | |
| type=int, | |
| default=4, | |
| help=("The dimension of the LoRA update matrices."), | |
| ) | |
| parser.add_argument("--use_lora_bias", action="store_true", help="If training the bias of lora_B layers.") | |
| parser.add_argument( | |
| "--lora_layers", | |
| type=str, | |
| default=None, | |
| help=( | |
| 'The transformer modules to apply LoRA training on. Please specify the layers in a comma separated. E.g. - "to_k,to_q,to_v,to_out.0" will result in lora training of attention layers only' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gaussian_init_lora", | |
| action="store_true", | |
| help="If using the Gaussian init strategy. When False, we follow the original LoRA init strategy.", | |
| ) | |
| parser.add_argument("--train_norm_layers", action="store_true", help="Whether to train the norm scales.") | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=5e-6, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--lr_num_cycles", | |
| type=int, | |
| default=1, | |
| help="Number of hard resets of the lr in cosine_with_restarts scheduler.", | |
| ) | |
| parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.") | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing the target image." | |
| ) | |
| parser.add_argument( | |
| "--conditioning_image_column", | |
| type=str, | |
| default="conditioning_image", | |
| help="The column of the dataset containing the control conditioning image.", | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument("--log_dataset_samples", action="store_true", help="Whether to log somple dataset samples.") | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." | |
| " Provide either a matching number of `--validation_image`s, a single `--validation_image`" | |
| " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--validation_image", | |
| type=str, | |
| default=None, | |
| nargs="+", | |
| help=( | |
| "A set of paths to the control conditioning image be evaluated every `--validation_steps`" | |
| " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" | |
| " a single `--validation_prompt` to be used with all `--validation_image`s, or a single" | |
| " `--validation_image` that will be used with all `--validation_prompt`s." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=1, | |
| help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair", | |
| ) | |
| parser.add_argument( | |
| "--validation_steps", | |
| type=int, | |
| default=100, | |
| help=( | |
| "Run validation every X steps. Validation consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`" | |
| " and logging the images." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--tracker_project_name", | |
| type=str, | |
| default="flux_train_control_lora", | |
| help=( | |
| "The `project_name` argument passed to Accelerator.init_trackers for" | |
| " more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--jsonl_for_train", | |
| type=str, | |
| default=None, | |
| help="Path to the jsonl file containing the training data.", | |
| ) | |
| parser.add_argument( | |
| "--guidance_scale", | |
| type=float, | |
| default=30.0, | |
| help="the guidance scale used for transformer.", | |
| ) | |
| parser.add_argument( | |
| "--upcast_before_saving", | |
| action="store_true", | |
| help=( | |
| "Whether to upcast the trained transformer layers to float32 before saving (at the end of training). " | |
| "Defaults to precision dtype used for training to save memory" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--weighting_scheme", | |
| type=str, | |
| default="none", | |
| choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"], | |
| help=('We default to the "none" weighting scheme for uniform sampling and uniform loss'), | |
| ) | |
| parser.add_argument( | |
| "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme." | |
| ) | |
| parser.add_argument( | |
| "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme." | |
| ) | |
| parser.add_argument( | |
| "--mode_scale", | |
| type=float, | |
| default=1.29, | |
| help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.", | |
| ) | |
| parser.add_argument( | |
| "--offload", | |
| action="store_true", | |
| help="Whether to offload the VAE and the text encoders to CPU when they are not used.", | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| if args.dataset_name is None and args.jsonl_for_train is None: | |
| raise ValueError("Specify either `--dataset_name` or `--jsonl_for_train`") | |
| if args.dataset_name is not None and args.jsonl_for_train is not None: | |
| raise ValueError("Specify only one of `--dataset_name` or `--jsonl_for_train`") | |
| if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: | |
| raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") | |
| if args.validation_prompt is not None and args.validation_image is None: | |
| raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") | |
| if args.validation_prompt is None and args.validation_image is not None: | |
| raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") | |
| if ( | |
| args.validation_image is not None | |
| and args.validation_prompt is not None | |
| and len(args.validation_image) != 1 | |
| and len(args.validation_prompt) != 1 | |
| and len(args.validation_image) != len(args.validation_prompt) | |
| ): | |
| raise ValueError( | |
| "Must provide either 1 `--validation_image`, 1 `--validation_prompt`," | |
| " or the same number of `--validation_prompt`s and `--validation_image`s" | |
| ) | |
| if args.resolution % 8 != 0: | |
| raise ValueError( | |
| "`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the Flux transformer." | |
| ) | |
| return args | |
| def get_train_dataset(args, accelerator): | |
| dataset = None | |
| if args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| dataset = load_dataset( | |
| args.dataset_name, | |
| args.dataset_config_name, | |
| cache_dir=args.cache_dir, | |
| ) | |
| if args.jsonl_for_train is not None: | |
| # load from json | |
| dataset = load_dataset("json", data_files=args.jsonl_for_train, cache_dir=args.cache_dir) | |
| dataset = dataset.flatten_indices() | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| column_names = dataset["train"].column_names | |
| # 6. Get the column names for input/target. | |
| if args.image_column is None: | |
| image_column = column_names[0] | |
| logger.info(f"image column defaulting to {image_column}") | |
| else: | |
| image_column = args.image_column | |
| if image_column not in column_names: | |
| raise ValueError( | |
| f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| if args.caption_column is None: | |
| caption_column = column_names[1] | |
| logger.info(f"caption column defaulting to {caption_column}") | |
| else: | |
| caption_column = args.caption_column | |
| if caption_column not in column_names: | |
| raise ValueError( | |
| f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| if args.conditioning_image_column is None: | |
| conditioning_image_column = column_names[2] | |
| logger.info(f"conditioning image column defaulting to {conditioning_image_column}") | |
| else: | |
| conditioning_image_column = args.conditioning_image_column | |
| if conditioning_image_column not in column_names: | |
| raise ValueError( | |
| f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" | |
| ) | |
| with accelerator.main_process_first(): | |
| train_dataset = dataset["train"].shuffle(seed=args.seed) | |
| if args.max_train_samples is not None: | |
| train_dataset = train_dataset.select(range(args.max_train_samples)) | |
| return train_dataset | |
| def prepare_train_dataset(dataset, accelerator): | |
| image_transforms = transforms.Compose( | |
| [ | |
| transforms.Resize((args.resolution, args.resolution), interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
| ] | |
| ) | |
| def preprocess_train(examples): | |
| images = [ | |
| (image.convert("RGB") if not isinstance(image, str) else Image.open(image).convert("RGB")) | |
| for image in examples[args.image_column] | |
| ] | |
| images = [image_transforms(image) for image in images] | |
| conditioning_images = [ | |
| (image.convert("RGB") if not isinstance(image, str) else Image.open(image).convert("RGB")) | |
| for image in examples[args.conditioning_image_column] | |
| ] | |
| conditioning_images = [image_transforms(image) for image in conditioning_images] | |
| examples["pixel_values"] = images | |
| examples["conditioning_pixel_values"] = conditioning_images | |
| is_caption_list = isinstance(examples[args.caption_column][0], list) | |
| if is_caption_list: | |
| examples["captions"] = [max(example, key=len) for example in examples[args.caption_column]] | |
| else: | |
| examples["captions"] = list(examples[args.caption_column]) | |
| return examples | |
| with accelerator.main_process_first(): | |
| dataset = dataset.with_transform(preprocess_train) | |
| return dataset | |
| def collate_fn(examples): | |
| pixel_values = torch.stack([example["pixel_values"] for example in examples]) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) | |
| conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() | |
| captions = [example["captions"] for example in examples] | |
| return {"pixel_values": pixel_values, "conditioning_pixel_values": conditioning_pixel_values, "captions": captions} | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| if args.use_lora_bias and args.gaussian_init_lora: | |
| raise ValueError("`gaussian` LoRA init scheme isn't supported when `use_lora_bias` is True.") | |
| logging_out_dir = Path(args.output_dir, args.logging_dir) | |
| if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=str(logging_out_dir)) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Disable AMP for MPS. A technique for accelerating machine learning computations on iOS and macOS devices. | |
| if torch.backends.mps.is_available(): | |
| logger.info("MPS is enabled. Disabling AMP.") | |
| accelerator.native_amp = False | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| # DEBUG, INFO, WARNING, ERROR, CRITICAL | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load models. We will load the text encoders later in a pipeline to compute | |
| # embeddings. | |
| vae = AutoencoderKL.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="vae", | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| vae_scale_factor = 2 ** (len(vae.config.block_out_channels) - 1) | |
| flux_transformer = FluxTransformer2DModel.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="transformer", | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| logger.info("All models loaded successfully") | |
| noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="scheduler", | |
| ) | |
| noise_scheduler_copy = copy.deepcopy(noise_scheduler) | |
| vae.requires_grad_(False) | |
| flux_transformer.requires_grad_(False) | |
| # cast down and move to the CPU | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # let's not move the VAE to the GPU yet. | |
| vae.to(dtype=torch.float32) # keep the VAE in float32. | |
| flux_transformer.to(dtype=weight_dtype, device=accelerator.device) | |
| # enable image inputs | |
| with torch.no_grad(): | |
| initial_input_channels = flux_transformer.config.in_channels | |
| new_linear = torch.nn.Linear( | |
| flux_transformer.x_embedder.in_features * 2, | |
| flux_transformer.x_embedder.out_features, | |
| bias=flux_transformer.x_embedder.bias is not None, | |
| dtype=flux_transformer.dtype, | |
| device=flux_transformer.device, | |
| ) | |
| new_linear.weight.zero_() | |
| new_linear.weight[:, :initial_input_channels].copy_(flux_transformer.x_embedder.weight) | |
| if flux_transformer.x_embedder.bias is not None: | |
| new_linear.bias.copy_(flux_transformer.x_embedder.bias) | |
| flux_transformer.x_embedder = new_linear | |
| assert torch.all(flux_transformer.x_embedder.weight[:, initial_input_channels:].data == 0) | |
| flux_transformer.register_to_config(in_channels=initial_input_channels * 2, out_channels=initial_input_channels) | |
| if args.train_norm_layers: | |
| for name, param in flux_transformer.named_parameters(): | |
| if any(k in name for k in NORM_LAYER_PREFIXES): | |
| param.requires_grad = True | |
| if args.lora_layers is not None: | |
| if args.lora_layers != "all-linear": | |
| target_modules = [layer.strip() for layer in args.lora_layers.split(",")] | |
| # add the input layer to the mix. | |
| if "x_embedder" not in target_modules: | |
| target_modules.append("x_embedder") | |
| elif args.lora_layers == "all-linear": | |
| target_modules = set() | |
| for name, module in flux_transformer.named_modules(): | |
| if isinstance(module, torch.nn.Linear): | |
| target_modules.add(name) | |
| target_modules = list(target_modules) | |
| else: | |
| target_modules = [ | |
| "x_embedder", | |
| "attn.to_k", | |
| "attn.to_q", | |
| "attn.to_v", | |
| "attn.to_out.0", | |
| "attn.add_k_proj", | |
| "attn.add_q_proj", | |
| "attn.add_v_proj", | |
| "attn.to_add_out", | |
| "ff.net.0.proj", | |
| "ff.net.2", | |
| "ff_context.net.0.proj", | |
| "ff_context.net.2", | |
| ] | |
| transformer_lora_config = LoraConfig( | |
| r=args.rank, | |
| lora_alpha=args.rank, | |
| init_lora_weights="gaussian" if args.gaussian_init_lora else True, | |
| target_modules=target_modules, | |
| lora_bias=args.use_lora_bias, | |
| ) | |
| flux_transformer.add_adapter(transformer_lora_config) | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| transformer_lora_layers_to_save = None | |
| for model in models: | |
| if isinstance(unwrap_model(model), type(unwrap_model(flux_transformer))): | |
| model = unwrap_model(model) | |
| transformer_lora_layers_to_save = get_peft_model_state_dict(model) | |
| if args.train_norm_layers: | |
| transformer_norm_layers_to_save = { | |
| f"transformer.{name}": param | |
| for name, param in model.named_parameters() | |
| if any(k in name for k in NORM_LAYER_PREFIXES) | |
| } | |
| transformer_lora_layers_to_save = { | |
| **transformer_lora_layers_to_save, | |
| **transformer_norm_layers_to_save, | |
| } | |
| else: | |
| raise ValueError(f"unexpected save model: {model.__class__}") | |
| # make sure to pop weight so that corresponding model is not saved again | |
| if weights: | |
| weights.pop() | |
| FluxControlPipeline.save_lora_weights( | |
| output_dir, | |
| transformer_lora_layers=transformer_lora_layers_to_save, | |
| ) | |
| def load_model_hook(models, input_dir): | |
| transformer_ = None | |
| if not accelerator.distributed_type == DistributedType.DEEPSPEED: | |
| while len(models) > 0: | |
| model = models.pop() | |
| if isinstance(model, type(unwrap_model(flux_transformer))): | |
| transformer_ = model | |
| else: | |
| raise ValueError(f"unexpected save model: {model.__class__}") | |
| else: | |
| transformer_ = FluxTransformer2DModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="transformer" | |
| ).to(accelerator.device, weight_dtype) | |
| # Handle input dimension doubling before adding adapter | |
| with torch.no_grad(): | |
| initial_input_channels = transformer_.config.in_channels | |
| new_linear = torch.nn.Linear( | |
| transformer_.x_embedder.in_features * 2, | |
| transformer_.x_embedder.out_features, | |
| bias=transformer_.x_embedder.bias is not None, | |
| dtype=transformer_.dtype, | |
| device=transformer_.device, | |
| ) | |
| new_linear.weight.zero_() | |
| new_linear.weight[:, :initial_input_channels].copy_(transformer_.x_embedder.weight) | |
| if transformer_.x_embedder.bias is not None: | |
| new_linear.bias.copy_(transformer_.x_embedder.bias) | |
| transformer_.x_embedder = new_linear | |
| transformer_.register_to_config(in_channels=initial_input_channels * 2) | |
| transformer_.add_adapter(transformer_lora_config) | |
| lora_state_dict = FluxControlPipeline.lora_state_dict(input_dir) | |
| transformer_lora_state_dict = { | |
| f"{k.replace('transformer.', '')}": v | |
| for k, v in lora_state_dict.items() | |
| if k.startswith("transformer.") and "lora" in k | |
| } | |
| incompatible_keys = set_peft_model_state_dict( | |
| transformer_, transformer_lora_state_dict, adapter_name="default" | |
| ) | |
| if incompatible_keys is not None: | |
| # check only for unexpected keys | |
| unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) | |
| if unexpected_keys: | |
| logger.warning( | |
| f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " | |
| f" {unexpected_keys}. " | |
| ) | |
| if args.train_norm_layers: | |
| transformer_norm_state_dict = { | |
| k: v | |
| for k, v in lora_state_dict.items() | |
| if k.startswith("transformer.") and any(norm_k in k for norm_k in NORM_LAYER_PREFIXES) | |
| } | |
| transformer_._transformer_norm_layers = FluxControlPipeline._load_norm_into_transformer( | |
| transformer_norm_state_dict, | |
| transformer=transformer_, | |
| discard_original_layers=False, | |
| ) | |
| # Make sure the trainable params are in float32. This is again needed since the base models | |
| # are in `weight_dtype`. More details: | |
| # https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804 | |
| if args.mixed_precision == "fp16": | |
| models = [transformer_] | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params(models) | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # Make sure the trainable params are in float32. | |
| if args.mixed_precision == "fp16": | |
| models = [flux_transformer] | |
| # only upcast trainable parameters (LoRA) into fp32 | |
| cast_training_params(models, dtype=torch.float32) | |
| if args.gradient_checkpointing: | |
| flux_transformer.enable_gradient_checkpointing() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # Optimization parameters | |
| transformer_lora_parameters = list(filter(lambda p: p.requires_grad, flux_transformer.parameters())) | |
| optimizer = optimizer_class( | |
| transformer_lora_parameters, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # Prepare dataset and dataloader. | |
| train_dataset = get_train_dataset(args, accelerator) | |
| train_dataset = prepare_train_dataset(train_dataset, accelerator) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| train_dataset, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. | |
| if args.max_train_steps is None: | |
| len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) | |
| num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) | |
| num_training_steps_for_scheduler = ( | |
| args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes | |
| ) | |
| else: | |
| num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, | |
| num_training_steps=num_training_steps_for_scheduler, | |
| num_cycles=args.lr_num_cycles, | |
| power=args.lr_power, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| flux_transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| flux_transformer, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: | |
| logger.warning( | |
| f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " | |
| f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " | |
| f"This inconsistency may result in the learning rate scheduler not functioning properly." | |
| ) | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = dict(vars(args)) | |
| # tensorboard cannot handle list types for config | |
| tracker_config.pop("validation_prompt") | |
| tracker_config.pop("validation_image") | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Create a pipeline for text encoding. We will move this pipeline to GPU/CPU as needed. | |
| text_encoding_pipeline = FluxControlPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, transformer=None, vae=None, torch_dtype=weight_dtype | |
| ) | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| logger.info(f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run.") | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| logger.info(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| if accelerator.is_main_process and args.report_to == "wandb" and args.log_dataset_samples: | |
| logger.info("Logging some dataset samples.") | |
| formatted_images = [] | |
| formatted_control_images = [] | |
| all_prompts = [] | |
| for i, batch in enumerate(train_dataloader): | |
| images = (batch["pixel_values"] + 1) / 2 | |
| control_images = (batch["conditioning_pixel_values"] + 1) / 2 | |
| prompts = batch["captions"] | |
| if len(formatted_images) > 10: | |
| break | |
| for img, control_img, prompt in zip(images, control_images, prompts): | |
| formatted_images.append(img) | |
| formatted_control_images.append(control_img) | |
| all_prompts.append(prompt) | |
| logged_artifacts = [] | |
| for img, control_img, prompt in zip(formatted_images, formatted_control_images, all_prompts): | |
| logged_artifacts.append(wandb.Image(control_img, caption="Conditioning")) | |
| logged_artifacts.append(wandb.Image(img, caption=prompt)) | |
| wandb_tracker = [tracker for tracker in accelerator.trackers if tracker.name == "wandb"] | |
| wandb_tracker[0].log({"dataset_samples": logged_artifacts}) | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| def get_sigmas(timesteps, n_dim=4, dtype=torch.float32): | |
| sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype) | |
| schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device) | |
| timesteps = timesteps.to(accelerator.device) | |
| step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < n_dim: | |
| sigma = sigma.unsqueeze(-1) | |
| return sigma | |
| image_logs = None | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| flux_transformer.train() | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(flux_transformer): | |
| # Convert images to latent space | |
| # vae encode | |
| pixel_latents = encode_images(batch["pixel_values"], vae.to(accelerator.device), weight_dtype) | |
| control_latents = encode_images( | |
| batch["conditioning_pixel_values"], vae.to(accelerator.device), weight_dtype | |
| ) | |
| if args.offload: | |
| # offload vae to CPU. | |
| vae.cpu() | |
| # Sample a random timestep for each image | |
| # for weighting schemes where we sample timesteps non-uniformly | |
| bsz = pixel_latents.shape[0] | |
| noise = torch.randn_like(pixel_latents, device=accelerator.device, dtype=weight_dtype) | |
| u = compute_density_for_timestep_sampling( | |
| weighting_scheme=args.weighting_scheme, | |
| batch_size=bsz, | |
| logit_mean=args.logit_mean, | |
| logit_std=args.logit_std, | |
| mode_scale=args.mode_scale, | |
| ) | |
| indices = (u * noise_scheduler_copy.config.num_train_timesteps).long() | |
| timesteps = noise_scheduler_copy.timesteps[indices].to(device=pixel_latents.device) | |
| # Add noise according to flow matching. | |
| sigmas = get_sigmas(timesteps, n_dim=pixel_latents.ndim, dtype=pixel_latents.dtype) | |
| noisy_model_input = (1.0 - sigmas) * pixel_latents + sigmas * noise | |
| # Concatenate across channels. | |
| # Question: Should we concatenate before adding noise? | |
| concatenated_noisy_model_input = torch.cat([noisy_model_input, control_latents], dim=1) | |
| # pack the latents. | |
| packed_noisy_model_input = FluxControlPipeline._pack_latents( | |
| concatenated_noisy_model_input, | |
| batch_size=bsz, | |
| num_channels_latents=concatenated_noisy_model_input.shape[1], | |
| height=concatenated_noisy_model_input.shape[2], | |
| width=concatenated_noisy_model_input.shape[3], | |
| ) | |
| # latent image ids for RoPE. | |
| latent_image_ids = FluxControlPipeline._prepare_latent_image_ids( | |
| bsz, | |
| concatenated_noisy_model_input.shape[2] // 2, | |
| concatenated_noisy_model_input.shape[3] // 2, | |
| accelerator.device, | |
| weight_dtype, | |
| ) | |
| # handle guidance | |
| if unwrap_model(flux_transformer).config.guidance_embeds: | |
| guidance_vec = torch.full( | |
| (bsz,), | |
| args.guidance_scale, | |
| device=noisy_model_input.device, | |
| dtype=weight_dtype, | |
| ) | |
| else: | |
| guidance_vec = None | |
| # text encoding. | |
| captions = batch["captions"] | |
| text_encoding_pipeline = text_encoding_pipeline.to("cuda") | |
| with torch.no_grad(): | |
| prompt_embeds, pooled_prompt_embeds, text_ids = text_encoding_pipeline.encode_prompt( | |
| captions, prompt_2=None | |
| ) | |
| # this could be optimized by not having to do any text encoding and just | |
| # doing zeros on specified shapes for `prompt_embeds` and `pooled_prompt_embeds` | |
| if args.proportion_empty_prompts and random.random() < args.proportion_empty_prompts: | |
| prompt_embeds.zero_() | |
| pooled_prompt_embeds.zero_() | |
| if args.offload: | |
| text_encoding_pipeline = text_encoding_pipeline.to("cpu") | |
| # Predict. | |
| model_pred = flux_transformer( | |
| hidden_states=packed_noisy_model_input, | |
| timestep=timesteps / 1000, | |
| guidance=guidance_vec, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_image_ids, | |
| return_dict=False, | |
| )[0] | |
| model_pred = FluxControlPipeline._unpack_latents( | |
| model_pred, | |
| height=noisy_model_input.shape[2] * vae_scale_factor, | |
| width=noisy_model_input.shape[3] * vae_scale_factor, | |
| vae_scale_factor=vae_scale_factor, | |
| ) | |
| # these weighting schemes use a uniform timestep sampling | |
| # and instead post-weight the loss | |
| weighting = compute_loss_weighting_for_sd3(weighting_scheme=args.weighting_scheme, sigmas=sigmas) | |
| # flow-matching loss | |
| target = noise - pixel_latents | |
| loss = torch.mean( | |
| (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1), | |
| 1, | |
| ) | |
| loss = loss.mean() | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = flux_transformer.parameters() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| # DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues. | |
| if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if args.validation_prompt is not None and global_step % args.validation_steps == 0: | |
| image_logs = log_validation( | |
| flux_transformer=flux_transformer, | |
| args=args, | |
| accelerator=accelerator, | |
| weight_dtype=weight_dtype, | |
| step=global_step, | |
| ) | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Create the pipeline using using the trained modules and save it. | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| flux_transformer = unwrap_model(flux_transformer) | |
| if args.upcast_before_saving: | |
| flux_transformer.to(torch.float32) | |
| transformer_lora_layers = get_peft_model_state_dict(flux_transformer) | |
| if args.train_norm_layers: | |
| transformer_norm_layers = { | |
| f"transformer.{name}": param | |
| for name, param in flux_transformer.named_parameters() | |
| if any(k in name for k in NORM_LAYER_PREFIXES) | |
| } | |
| transformer_lora_layers = {**transformer_lora_layers, **transformer_norm_layers} | |
| FluxControlPipeline.save_lora_weights( | |
| save_directory=args.output_dir, | |
| transformer_lora_layers=transformer_lora_layers, | |
| ) | |
| del flux_transformer | |
| del text_encoding_pipeline | |
| del vae | |
| free_memory() | |
| # Run a final round of validation. | |
| image_logs = None | |
| if args.validation_prompt is not None: | |
| image_logs = log_validation( | |
| flux_transformer=None, | |
| args=args, | |
| accelerator=accelerator, | |
| weight_dtype=weight_dtype, | |
| step=global_step, | |
| is_final_validation=True, | |
| ) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id, | |
| image_logs=image_logs, | |
| base_model=args.pretrained_model_name_or_path, | |
| repo_folder=args.output_dir, | |
| ) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*", "*.pt", "*.bin"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |