Spaces:
Runtime error
Runtime error
| from typing import List, Optional, Tuple, Union | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from diffusers.configuration_utils import ConfigMixin | |
| from diffusers.pipelines.pipeline_utils import ImagePipelineOutput | |
| from diffusers.schedulers.scheduling_utils import SchedulerMixin | |
| class IADBScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist. | |
| For more details, see the original paper: https://huggingface.co/papers/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html | |
| """ | |
| def step( | |
| self, | |
| model_output: torch.Tensor, | |
| timestep: int, | |
| x_alpha: torch.Tensor, | |
| ) -> torch.Tensor: | |
| """ | |
| Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion | |
| process from the learned model outputs (most often the predicted noise). | |
| Args: | |
| model_output (`torch.Tensor`): direct output from learned diffusion model. It is the direction from x0 to x1. | |
| timestep (`float`): current timestep in the diffusion chain. | |
| x_alpha (`torch.Tensor`): x_alpha sample for the current timestep | |
| Returns: | |
| `torch.Tensor`: the sample at the previous timestep | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| alpha = timestep / self.num_inference_steps | |
| alpha_next = (timestep + 1) / self.num_inference_steps | |
| d = model_output | |
| x_alpha = x_alpha + (alpha_next - alpha) * d | |
| return x_alpha | |
| def set_timesteps(self, num_inference_steps: int): | |
| self.num_inference_steps = num_inference_steps | |
| def add_noise( | |
| self, | |
| original_samples: torch.Tensor, | |
| noise: torch.Tensor, | |
| alpha: torch.Tensor, | |
| ) -> torch.Tensor: | |
| return original_samples * alpha + noise * (1 - alpha) | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |
| class IADBPipeline(DiffusionPipeline): | |
| r""" | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Parameters: | |
| unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of | |
| [`DDPMScheduler`], or [`DDIMScheduler`]. | |
| """ | |
| def __init__(self, unet, scheduler): | |
| super().__init__() | |
| self.register_modules(unet=unet, scheduler=scheduler) | |
| def __call__( | |
| self, | |
| batch_size: int = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| num_inference_steps: int = 50, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| ) -> Union[ImagePipelineOutput, Tuple]: | |
| r""" | |
| Args: | |
| batch_size (`int`, *optional*, defaults to 1): | |
| The number of images to generate. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is | |
| True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| # Sample gaussian noise to begin loop | |
| if isinstance(self.unet.config.sample_size, int): | |
| image_shape = ( | |
| batch_size, | |
| self.unet.config.in_channels, | |
| self.unet.config.sample_size, | |
| self.unet.config.sample_size, | |
| ) | |
| else: | |
| image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype) | |
| # set step values | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| x_alpha = image.clone() | |
| for t in self.progress_bar(range(num_inference_steps)): | |
| alpha = t / num_inference_steps | |
| # 1. predict noise model_output | |
| model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample | |
| # 2. step | |
| x_alpha = self.scheduler.step(model_output, t, x_alpha) | |
| image = (x_alpha * 0.5 + 0.5).clamp(0, 1) | |
| image = image.cpu().permute(0, 2, 3, 1).numpy() | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |