Spaces:
Runtime error
Runtime error
| """ | |
| This script performs DDIM inversion for video frames using a pre-trained model and generates | |
| a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to | |
| process video frames, apply the DDIM inverse scheduler, and produce an output video. | |
| **Please notice that this script is based on the CogVideoX 5B model, and would not generate | |
| a good result for 2B variants.** | |
| Usage: | |
| python cogvideox_ddim_inversion.py | |
| --model-path /path/to/model | |
| --prompt "a prompt" | |
| --video-path /path/to/video.mp4 | |
| --output-path /path/to/output | |
| For more details about the cli arguments, please run `python cogvideox_ddim_inversion.py --help`. | |
| Author: | |
| LittleNyima <littlenyima[at]163[dot]com> | |
| """ | |
| import argparse | |
| import math | |
| import os | |
| from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision.transforms as T | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0 | |
| from diffusers.models.autoencoders import AutoencoderKLCogVideoX | |
| from diffusers.models.embeddings import apply_rotary_emb | |
| from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps | |
| from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler | |
| from diffusers.utils import export_to_video | |
| # Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error. | |
| # Very few bug reports but it happens. Look in decord Github issues for more relevant information. | |
| import decord # isort: skip | |
| class DDIMInversionArguments(TypedDict): | |
| model_path: str | |
| prompt: str | |
| video_path: str | |
| output_path: str | |
| guidance_scale: float | |
| num_inference_steps: int | |
| skip_frames_start: int | |
| skip_frames_end: int | |
| frame_sample_step: Optional[int] | |
| max_num_frames: int | |
| width: int | |
| height: int | |
| fps: int | |
| dtype: torch.dtype | |
| seed: int | |
| device: torch.device | |
| def get_args() -> DDIMInversionArguments: | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model_path", type=str, required=True, help="Path of the pretrained model") | |
| parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure") | |
| parser.add_argument("--video_path", type=str, required=True, help="Path of the video for inversion") | |
| parser.add_argument("--output_path", type=str, default="output", help="Path of the output videos") | |
| parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale") | |
| parser.add_argument("--num_inference_steps", type=int, default=50, help="Number of inference steps") | |
| parser.add_argument("--skip_frames_start", type=int, default=0, help="Number of skipped frames from the start") | |
| parser.add_argument("--skip_frames_end", type=int, default=0, help="Number of skipped frames from the end") | |
| parser.add_argument("--frame_sample_step", type=int, default=None, help="Temporal stride of the sampled frames") | |
| parser.add_argument("--max_num_frames", type=int, default=81, help="Max number of sampled frames") | |
| parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames") | |
| parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames") | |
| parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos") | |
| parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model") | |
| parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator") | |
| parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference") | |
| args = parser.parse_args() | |
| args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16 | |
| args.device = torch.device(args.device) | |
| return DDIMInversionArguments(**vars(args)) | |
| class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0): | |
| def __init__(self): | |
| super().__init__() | |
| def calculate_attention( | |
| self, | |
| query: torch.Tensor, | |
| key: torch.Tensor, | |
| value: torch.Tensor, | |
| attn: Attention, | |
| batch_size: int, | |
| image_seq_length: int, | |
| text_seq_length: int, | |
| attention_mask: Optional[torch.Tensor], | |
| image_rotary_emb: Optional[torch.Tensor], | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| r""" | |
| Core attention computation with inversion-guided RoPE integration. | |
| Args: | |
| query (`torch.Tensor`): `[batch_size, seq_len, dim]` query tensor | |
| key (`torch.Tensor`): `[batch_size, seq_len, dim]` key tensor | |
| value (`torch.Tensor`): `[batch_size, seq_len, dim]` value tensor | |
| attn (`Attention`): Parent attention module with projection layers | |
| batch_size (`int`): Effective batch size (after chunk splitting) | |
| image_seq_length (`int`): Length of image feature sequence | |
| text_seq_length (`int`): Length of text feature sequence | |
| attention_mask (`Optional[torch.Tensor]`): Attention mask tensor | |
| image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image positions | |
| Returns: | |
| `Tuple[torch.Tensor, torch.Tensor]`: | |
| (1) hidden_states: [batch_size, image_seq_length, dim] processed image features | |
| (2) encoder_hidden_states: [batch_size, text_seq_length, dim] processed text features | |
| """ | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_q is not None: | |
| query = attn.norm_q(query) | |
| if attn.norm_k is not None: | |
| key = attn.norm_k(key) | |
| # Apply RoPE if needed | |
| if image_rotary_emb is not None: | |
| query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) | |
| if not attn.is_cross_attention: | |
| if key.size(2) == query.size(2): # Attention for reference hidden states | |
| key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) | |
| else: # RoPE should be applied to each group of image tokens | |
| key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb( | |
| key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb | |
| ) | |
| key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb( | |
| key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb | |
| ) | |
| hidden_states = F.scaled_dot_product_attention( | |
| query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| encoder_hidden_states, hidden_states = hidden_states.split( | |
| [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 | |
| ) | |
| return hidden_states, encoder_hidden_states | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| r""" | |
| Process the dual-path attention for the inversion-guided denoising procedure. | |
| Args: | |
| attn (`Attention`): Parent attention module | |
| hidden_states (`torch.Tensor`): `[batch_size, image_seq_len, dim]` Image tokens | |
| encoder_hidden_states (`torch.Tensor`): `[batch_size, text_seq_len, dim]` Text tokens | |
| attention_mask (`Optional[torch.Tensor]`): Optional attention mask | |
| image_rotary_emb (`Optional[torch.Tensor]`): Rotary embeddings for image tokens | |
| Returns: | |
| `Tuple[torch.Tensor, torch.Tensor]`: | |
| (1) Final hidden states: `[batch_size, image_seq_length, dim]` Resulting image tokens | |
| (2) Final encoder states: `[batch_size, text_seq_length, dim]` Resulting text tokens | |
| """ | |
| image_seq_length = hidden_states.size(1) | |
| text_seq_length = encoder_hidden_states.size(1) | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| batch_size, sequence_length, _ = ( | |
| hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| ) | |
| if attention_mask is not None: | |
| attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| query, query_reference = query.chunk(2) | |
| key, key_reference = key.chunk(2) | |
| value, value_reference = value.chunk(2) | |
| batch_size = batch_size // 2 | |
| hidden_states, encoder_hidden_states = self.calculate_attention( | |
| query=query, | |
| key=torch.cat((key, key_reference), dim=1), | |
| value=torch.cat((value, value_reference), dim=1), | |
| attn=attn, | |
| batch_size=batch_size, | |
| image_seq_length=image_seq_length, | |
| text_seq_length=text_seq_length, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention( | |
| query=query_reference, | |
| key=key_reference, | |
| value=value_reference, | |
| attn=attn, | |
| batch_size=batch_size, | |
| image_seq_length=image_seq_length, | |
| text_seq_length=text_seq_length, | |
| attention_mask=attention_mask, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| return ( | |
| torch.cat((hidden_states, hidden_states_reference)), | |
| torch.cat((encoder_hidden_states, encoder_hidden_states_reference)), | |
| ) | |
| class OverrideAttnProcessors: | |
| r""" | |
| Context manager for temporarily overriding attention processors in CogVideo transformer blocks. | |
| Designed for DDIM inversion process, replaces original attention processors with | |
| `CogVideoXAttnProcessor2_0ForDDIMInversion` and restores them upon exit. Uses Python context manager | |
| pattern to safely manage processor replacement. | |
| Typical usage: | |
| ```python | |
| with OverrideAttnProcessors(transformer): | |
| # Perform DDIM inversion operations | |
| ``` | |
| Args: | |
| transformer (`CogVideoXTransformer3DModel`): | |
| The transformer model containing attention blocks to be modified. Should have | |
| `transformer_blocks` attribute containing `CogVideoXBlock` instances. | |
| """ | |
| def __init__(self, transformer: CogVideoXTransformer3DModel): | |
| self.transformer = transformer | |
| self.original_processors = {} | |
| def __enter__(self): | |
| for block in self.transformer.transformer_blocks: | |
| block = cast(CogVideoXBlock, block) | |
| self.original_processors[id(block)] = block.attn1.get_processor() | |
| block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion()) | |
| def __exit__(self, _0, _1, _2): | |
| for block in self.transformer.transformer_blocks: | |
| block = cast(CogVideoXBlock, block) | |
| block.attn1.set_processor(self.original_processors[id(block)]) | |
| def get_video_frames( | |
| video_path: str, | |
| width: int, | |
| height: int, | |
| skip_frames_start: int, | |
| skip_frames_end: int, | |
| max_num_frames: int, | |
| frame_sample_step: Optional[int], | |
| ) -> torch.FloatTensor: | |
| """ | |
| Extract and preprocess video frames from a video file for VAE processing. | |
| Args: | |
| video_path (`str`): Path to input video file | |
| width (`int`): Target frame width for decoding | |
| height (`int`): Target frame height for decoding | |
| skip_frames_start (`int`): Number of frames to skip at video start | |
| skip_frames_end (`int`): Number of frames to skip at video end | |
| max_num_frames (`int`): Maximum allowed number of output frames | |
| frame_sample_step (`Optional[int]`): | |
| Frame sampling step size. If None, automatically calculated as: | |
| (total_frames - skipped_frames) // max_num_frames | |
| Returns: | |
| `torch.FloatTensor`: Preprocessed frames in `[F, C, H, W]` format where: | |
| - `F`: Number of frames (adjusted to 4k + 1 for VAE compatibility) | |
| - `C`: Channels (3 for RGB) | |
| - `H`: Frame height | |
| - `W`: Frame width | |
| """ | |
| with decord.bridge.use_torch(): | |
| video_reader = decord.VideoReader(uri=video_path, width=width, height=height) | |
| video_num_frames = len(video_reader) | |
| start_frame = min(skip_frames_start, video_num_frames) | |
| end_frame = max(0, video_num_frames - skip_frames_end) | |
| if end_frame <= start_frame: | |
| indices = [start_frame] | |
| elif end_frame - start_frame <= max_num_frames: | |
| indices = list(range(start_frame, end_frame)) | |
| else: | |
| step = frame_sample_step or (end_frame - start_frame) // max_num_frames | |
| indices = list(range(start_frame, end_frame, step)) | |
| frames = video_reader.get_batch(indices=indices) | |
| frames = frames[:max_num_frames].float() # ensure that we don't go over the limit | |
| # Choose first (4k + 1) frames as this is how many is required by the VAE | |
| selected_num_frames = frames.size(0) | |
| remainder = (3 + selected_num_frames) % 4 | |
| if remainder != 0: | |
| frames = frames[:-remainder] | |
| assert frames.size(0) % 4 == 1 | |
| # Normalize the frames | |
| transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0) | |
| frames = torch.stack(tuple(map(transform, frames)), dim=0) | |
| return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W] | |
| class CogVideoXDDIMInversionOutput: | |
| inverse_latents: torch.FloatTensor | |
| recon_latents: torch.FloatTensor | |
| def __init__(self, inverse_latents: torch.FloatTensor, recon_latents: torch.FloatTensor): | |
| self.inverse_latents = inverse_latents | |
| self.recon_latents = recon_latents | |
| class CogVideoXPipelineForDDIMInversion(CogVideoXPipeline): | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKLCogVideoX, | |
| transformer: CogVideoXTransformer3DModel, | |
| scheduler: CogVideoXDDIMScheduler, | |
| ): | |
| super().__init__( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| vae=vae, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.inverse_scheduler = DDIMInverseScheduler(**scheduler.config) | |
| def encode_video_frames(self, video_frames: torch.FloatTensor) -> torch.FloatTensor: | |
| """ | |
| Encode video frames into latent space using Variational Autoencoder. | |
| Args: | |
| video_frames (`torch.FloatTensor`): | |
| Input frames tensor in `[F, C, H, W]` format from `get_video_frames()` | |
| Returns: | |
| `torch.FloatTensor`: Encoded latents in `[1, F, D, H_latent, W_latent]` format where: | |
| - `F`: Number of frames (same as input) | |
| - `D`: Latent channel dimension | |
| - `H_latent`: Latent space height (H // 2^vae.downscale_factor) | |
| - `W_latent`: Latent space width (W // 2^vae.downscale_factor) | |
| """ | |
| vae: AutoencoderKLCogVideoX = self.vae | |
| video_frames = video_frames.to(device=vae.device, dtype=vae.dtype) | |
| video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W] | |
| latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2) | |
| return latent_dist * vae.config.scaling_factor | |
| def export_latents_to_video(self, latents: torch.FloatTensor, video_path: str, fps: int): | |
| r""" | |
| Decode latent vectors into video and export as video file. | |
| Args: | |
| latents (`torch.FloatTensor`): Encoded latents in `[B, F, D, H_latent, W_latent]` format from | |
| `encode_video_frames()` | |
| video_path (`str`): Output path for video file | |
| fps (`int`): Target frames per second for output video | |
| """ | |
| video = self.decode_latents(latents) | |
| frames = self.video_processor.postprocess_video(video=video, output_type="pil") | |
| os.makedirs(os.path.dirname(video_path), exist_ok=True) | |
| export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps) | |
| # Modified from CogVideoXPipeline.__call__ | |
| def sample( | |
| self, | |
| latents: torch.FloatTensor, | |
| scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler], | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 6, | |
| use_dynamic_cfg: bool = False, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| reference_latents: torch.FloatTensor = None, | |
| ) -> torch.FloatTensor: | |
| r""" | |
| Execute the core sampling loop for video generation/inversion using CogVideoX. | |
| Implements the full denoising trajectory recording for both DDIM inversion and | |
| generation processes. Supports dynamic classifier-free guidance and reference | |
| latent conditioning. | |
| Args: | |
| latents (`torch.FloatTensor`): | |
| Initial noise tensor of shape `[B, F, C, H, W]`. | |
| scheduler (`Union[DDIMInverseScheduler, CogVideoXDDIMScheduler]`): | |
| Scheduling strategy for diffusion process. Use: | |
| (1) `DDIMInverseScheduler` for inversion | |
| (2) `CogVideoXDDIMScheduler` for generation | |
| prompt (`Optional[Union[str, List[str]]]`): | |
| Text prompt(s) for conditional generation. Defaults to unconditional. | |
| negative_prompt (`Optional[Union[str, List[str]]]`): | |
| Negative prompt(s) for guidance. Requires `guidance_scale > 1`. | |
| num_inference_steps (`int`): | |
| Number of denoising steps. Affects quality/compute trade-off. | |
| guidance_scale (`float`): | |
| Classifier-free guidance weight. 1.0 = no guidance. | |
| use_dynamic_cfg (`bool`): | |
| Enable time-varying guidance scale (cosine schedule) | |
| eta (`float`): | |
| DDIM variance parameter (0 = deterministic process) | |
| generator (`Optional[Union[torch.Generator, List[torch.Generator]]]`): | |
| Random number generator(s) for reproducibility | |
| attention_kwargs (`Optional[Dict[str, Any]]`): | |
| Custom parameters for attention modules | |
| reference_latents (`torch.FloatTensor`): | |
| Reference latent trajectory for conditional sampling. Shape should match | |
| `[T, B, F, C, H, W]` where `T` is number of timesteps | |
| Returns: | |
| `torch.FloatTensor`: | |
| Full denoising trajectory tensor of shape `[T, B, F, C, H, W]`. | |
| """ | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| negative_prompt, | |
| do_classifier_free_guidance, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| if reference_latents is not None: | |
| prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latents. | |
| latents = latents.to(device=device) * scheduler.init_noise_sigma | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs | |
| extra_step_kwargs = {} | |
| # 7. Create rotary embeds if required | |
| image_rotary_emb = ( | |
| self._prepare_rotary_positional_embeddings( | |
| height=latents.size(3) * self.vae_scale_factor_spatial, | |
| width=latents.size(4) * self.vae_scale_factor_spatial, | |
| num_frames=latents.size(1), | |
| device=device, | |
| ) | |
| if self.transformer.config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0) | |
| trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| if reference_latents is not None: | |
| reference = reference_latents[i] | |
| reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference | |
| latent_model_input = torch.cat([latent_model_input, reference], dim=0) | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timestep, | |
| image_rotary_emb=image_rotary_emb, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred.float() | |
| if reference_latents is not None: # Recover the original batch size | |
| noise_pred, _ = noise_pred.chunk(2) | |
| # perform guidance | |
| if use_dynamic_cfg: | |
| self._guidance_scale = 1 + guidance_scale * ( | |
| (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the noisy sample x_t-1 -> x_t | |
| latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| latents = latents.to(prompt_embeds.dtype) | |
| trajectory[i] = latents | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): | |
| progress_bar.update() | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| return trajectory | |
| def __call__( | |
| self, | |
| prompt: str, | |
| video_path: str, | |
| guidance_scale: float, | |
| num_inference_steps: int, | |
| skip_frames_start: int, | |
| skip_frames_end: int, | |
| frame_sample_step: Optional[int], | |
| max_num_frames: int, | |
| width: int, | |
| height: int, | |
| seed: int, | |
| ): | |
| """ | |
| Performs DDIM inversion on a video to reconstruct it with a new prompt. | |
| Args: | |
| prompt (`str`): The text prompt to guide the reconstruction. | |
| video_path (`str`): Path to the input video file. | |
| guidance_scale (`float`): Scale for classifier-free guidance. | |
| num_inference_steps (`int`): Number of denoising steps. | |
| skip_frames_start (`int`): Number of frames to skip from the beginning of the video. | |
| skip_frames_end (`int`): Number of frames to skip from the end of the video. | |
| frame_sample_step (`Optional[int]`): Step size for sampling frames. If None, all frames are used. | |
| max_num_frames (`int`): Maximum number of frames to process. | |
| width (`int`): Width of the output video frames. | |
| height (`int`): Height of the output video frames. | |
| seed (`int`): Random seed for reproducibility. | |
| Returns: | |
| `CogVideoXDDIMInversionOutput`: Contains the inverse latents and reconstructed latents. | |
| """ | |
| if not self.transformer.config.use_rotary_positional_embeddings: | |
| raise NotImplementedError("This script supports CogVideoX 5B model only.") | |
| video_frames = get_video_frames( | |
| video_path=video_path, | |
| width=width, | |
| height=height, | |
| skip_frames_start=skip_frames_start, | |
| skip_frames_end=skip_frames_end, | |
| max_num_frames=max_num_frames, | |
| frame_sample_step=frame_sample_step, | |
| ).to(device=self.device) | |
| video_latents = self.encode_video_frames(video_frames=video_frames) | |
| inverse_latents = self.sample( | |
| latents=video_latents, | |
| scheduler=self.inverse_scheduler, | |
| prompt="", | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator(device=self.device).manual_seed(seed), | |
| ) | |
| with OverrideAttnProcessors(transformer=self.transformer): | |
| recon_latents = self.sample( | |
| latents=torch.randn_like(video_latents), | |
| scheduler=self.scheduler, | |
| prompt=prompt, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| generator=torch.Generator(device=self.device).manual_seed(seed), | |
| reference_latents=reversed(inverse_latents), | |
| ) | |
| return CogVideoXDDIMInversionOutput( | |
| inverse_latents=inverse_latents, | |
| recon_latents=recon_latents, | |
| ) | |
| if __name__ == "__main__": | |
| arguments = get_args() | |
| pipeline = CogVideoXPipelineForDDIMInversion.from_pretrained( | |
| arguments.pop("model_path"), | |
| torch_dtype=arguments.pop("dtype"), | |
| ).to(device=arguments.pop("device")) | |
| output_path = arguments.pop("output_path") | |
| fps = arguments.pop("fps") | |
| inverse_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_inversion.mp4") | |
| recon_video_path = os.path.join(output_path, f"{arguments.get('video_path')}_reconstruction.mp4") | |
| # Run DDIM inversion | |
| output = pipeline(**arguments) | |
| pipeline.export_latents_to_video(output.inverse_latents[-1], inverse_video_path, fps) | |
| pipeline.export_latents_to_video(output.recon_latents[-1], recon_video_path, fps) | |