Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,691 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..models.attention import BasicTransformerBlock, FreeNoiseTransformerBlock
from ..models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
from ..models.transformers.transformer_2d import Transformer2DModel
from ..models.unets.unet_motion_model import (
AnimateDiffTransformer3D,
CrossAttnDownBlockMotion,
DownBlockMotion,
UpBlockMotion,
)
from ..pipelines.pipeline_utils import DiffusionPipeline
from ..utils import logging
from ..utils.torch_utils import randn_tensor
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class SplitInferenceModule(nn.Module):
r"""
A wrapper module class that splits inputs along a specified dimension before performing a forward pass.
This module is useful when you need to perform inference on large tensors in a memory-efficient way by breaking
them into smaller chunks, processing each chunk separately, and then reassembling the results.
Args:
module (`nn.Module`):
The underlying PyTorch module that will be applied to each chunk of split inputs.
split_size (`int`, defaults to `1`):
The size of each chunk after splitting the input tensor.
split_dim (`int`, defaults to `0`):
The dimension along which the input tensors are split.
input_kwargs_to_split (`List[str]`, defaults to `["hidden_states"]`):
A list of keyword arguments (strings) that represent the input tensors to be split.
Workflow:
1. The keyword arguments specified in `input_kwargs_to_split` are split into smaller chunks using
`torch.split()` along the dimension `split_dim` and with a chunk size of `split_size`.
2. The `module` is invoked once for each split with both the split inputs and any unchanged arguments
that were passed.
3. The output tensors from each split are concatenated back together along `split_dim` before returning.
Example:
```python
>>> import torch
>>> import torch.nn as nn
>>> model = nn.Linear(1000, 1000)
>>> split_module = SplitInferenceModule(model, split_size=2, split_dim=0, input_kwargs_to_split=["input"])
>>> input_tensor = torch.randn(42, 1000)
>>> # Will split the tensor into 21 slices of shape [2, 1000].
>>> output = split_module(input=input_tensor)
```
It is also possible to nest `SplitInferenceModule` across different split dimensions for more complex
multi-dimensional splitting.
"""
def __init__(
self,
module: nn.Module,
split_size: int = 1,
split_dim: int = 0,
input_kwargs_to_split: List[str] = ["hidden_states"],
) -> None:
super().__init__()
self.module = module
self.split_size = split_size
self.split_dim = split_dim
self.input_kwargs_to_split = set(input_kwargs_to_split)
def forward(self, *args, **kwargs) -> Union[torch.Tensor, Tuple[torch.Tensor]]:
r"""Forward method for the `SplitInferenceModule`.
This method processes the input by splitting specified keyword arguments along a given dimension, running the
underlying module on each split, and then concatenating the results. The splitting is controlled by the
`split_size` and `split_dim` parameters specified during initialization.
Args:
*args (`Any`):
Positional arguments that are passed directly to the `module` without modification.
**kwargs (`Dict[str, torch.Tensor]`):
Keyword arguments passed to the underlying `module`. Only keyword arguments whose names match the
entries in `input_kwargs_to_split` and are of type `torch.Tensor` will be split. The remaining keyword
arguments are passed unchanged.
Returns:
`Union[torch.Tensor, Tuple[torch.Tensor]]`:
The outputs obtained from `SplitInferenceModule` are the same as if the underlying module was inferred
without it.
- If the underlying module returns a single tensor, the result will be a single concatenated tensor
along the same `split_dim` after processing all splits.
- If the underlying module returns a tuple of tensors, each element of the tuple will be concatenated
along the `split_dim` across all splits, and the final result will be a tuple of concatenated tensors.
"""
split_inputs = {}
# 1. Split inputs that were specified during initialization and also present in passed kwargs
for key in list(kwargs.keys()):
if key not in self.input_kwargs_to_split or not torch.is_tensor(kwargs[key]):
continue
split_inputs[key] = torch.split(kwargs[key], self.split_size, self.split_dim)
kwargs.pop(key)
# 2. Invoke forward pass across each split
results = []
for split_input in zip(*split_inputs.values()):
inputs = dict(zip(split_inputs.keys(), split_input))
inputs.update(kwargs)
intermediate_tensor_or_tensor_tuple = self.module(*args, **inputs)
results.append(intermediate_tensor_or_tensor_tuple)
# 3. Concatenate split restuls to obtain final outputs
if isinstance(results[0], torch.Tensor):
return torch.cat(results, dim=self.split_dim)
elif isinstance(results[0], tuple):
return tuple([torch.cat(x, dim=self.split_dim) for x in zip(*results)])
else:
raise ValueError(
"In order to use the SplitInferenceModule, it is necessary for the underlying `module` to either return a torch.Tensor or a tuple of torch.Tensor's."
)
class AnimateDiffFreeNoiseMixin:
r"""Mixin class for [FreeNoise](https://huggingface.co/papers/2310.15169)."""
def _enable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
r"""Helper function to enable FreeNoise in transformer blocks."""
for motion_module in block.motion_modules:
num_transformer_blocks = len(motion_module.transformer_blocks)
for i in range(num_transformer_blocks):
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
motion_module.transformer_blocks[i].set_free_noise_properties(
self._free_noise_context_length,
self._free_noise_context_stride,
self._free_noise_weighting_scheme,
)
else:
assert isinstance(motion_module.transformer_blocks[i], BasicTransformerBlock)
basic_transfomer_block = motion_module.transformer_blocks[i]
motion_module.transformer_blocks[i] = FreeNoiseTransformerBlock(
dim=basic_transfomer_block.dim,
num_attention_heads=basic_transfomer_block.num_attention_heads,
attention_head_dim=basic_transfomer_block.attention_head_dim,
dropout=basic_transfomer_block.dropout,
cross_attention_dim=basic_transfomer_block.cross_attention_dim,
activation_fn=basic_transfomer_block.activation_fn,
attention_bias=basic_transfomer_block.attention_bias,
only_cross_attention=basic_transfomer_block.only_cross_attention,
double_self_attention=basic_transfomer_block.double_self_attention,
positional_embeddings=basic_transfomer_block.positional_embeddings,
num_positional_embeddings=basic_transfomer_block.num_positional_embeddings,
context_length=self._free_noise_context_length,
context_stride=self._free_noise_context_stride,
weighting_scheme=self._free_noise_weighting_scheme,
).to(device=self.device, dtype=self.dtype)
motion_module.transformer_blocks[i].load_state_dict(
basic_transfomer_block.state_dict(), strict=True
)
motion_module.transformer_blocks[i].set_chunk_feed_forward(
basic_transfomer_block._chunk_size, basic_transfomer_block._chunk_dim
)
def _disable_free_noise_in_block(self, block: Union[CrossAttnDownBlockMotion, DownBlockMotion, UpBlockMotion]):
r"""Helper function to disable FreeNoise in transformer blocks."""
for motion_module in block.motion_modules:
num_transformer_blocks = len(motion_module.transformer_blocks)
for i in range(num_transformer_blocks):
if isinstance(motion_module.transformer_blocks[i], FreeNoiseTransformerBlock):
free_noise_transfomer_block = motion_module.transformer_blocks[i]
motion_module.transformer_blocks[i] = BasicTransformerBlock(
dim=free_noise_transfomer_block.dim,
num_attention_heads=free_noise_transfomer_block.num_attention_heads,
attention_head_dim=free_noise_transfomer_block.attention_head_dim,
dropout=free_noise_transfomer_block.dropout,
cross_attention_dim=free_noise_transfomer_block.cross_attention_dim,
activation_fn=free_noise_transfomer_block.activation_fn,
attention_bias=free_noise_transfomer_block.attention_bias,
only_cross_attention=free_noise_transfomer_block.only_cross_attention,
double_self_attention=free_noise_transfomer_block.double_self_attention,
positional_embeddings=free_noise_transfomer_block.positional_embeddings,
num_positional_embeddings=free_noise_transfomer_block.num_positional_embeddings,
).to(device=self.device, dtype=self.dtype)
motion_module.transformer_blocks[i].load_state_dict(
free_noise_transfomer_block.state_dict(), strict=True
)
motion_module.transformer_blocks[i].set_chunk_feed_forward(
free_noise_transfomer_block._chunk_size, free_noise_transfomer_block._chunk_dim
)
def _check_inputs_free_noise(
self,
prompt,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
num_frames,
) -> None:
if not isinstance(prompt, (str, dict)):
raise ValueError(f"Expected `prompt` to have type `str` or `dict` but found {type(prompt)=}")
if negative_prompt is not None:
if not isinstance(negative_prompt, (str, dict)):
raise ValueError(
f"Expected `negative_prompt` to have type `str` or `dict` but found {type(negative_prompt)=}"
)
if prompt_embeds is not None or negative_prompt_embeds is not None:
raise ValueError("`prompt_embeds` and `negative_prompt_embeds` is not supported in FreeNoise yet.")
frame_indices = [isinstance(x, int) for x in prompt.keys()]
frame_prompts = [isinstance(x, str) for x in prompt.values()]
min_frame = min(list(prompt.keys()))
max_frame = max(list(prompt.keys()))
if not all(frame_indices):
raise ValueError("Expected integer keys in `prompt` dict for FreeNoise.")
if not all(frame_prompts):
raise ValueError("Expected str values in `prompt` dict for FreeNoise.")
if min_frame != 0:
raise ValueError("The minimum frame index in `prompt` dict must be 0 as a starting prompt is necessary.")
if max_frame >= num_frames:
raise ValueError(
f"The maximum frame index in `prompt` dict must be lesser than {num_frames=} and follow 0-based indexing."
)
def _encode_prompt_free_noise(
self,
prompt: Union[str, Dict[int, str]],
num_frames: int,
device: torch.device,
num_videos_per_prompt: int,
do_classifier_free_guidance: bool,
negative_prompt: Optional[Union[str, Dict[int, str]]] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
) -> torch.Tensor:
if negative_prompt is None:
negative_prompt = ""
# Ensure that we have a dictionary of prompts
if isinstance(prompt, str):
prompt = {0: prompt}
if isinstance(negative_prompt, str):
negative_prompt = {0: negative_prompt}
self._check_inputs_free_noise(prompt, negative_prompt, prompt_embeds, negative_prompt_embeds, num_frames)
# Sort the prompts based on frame indices
prompt = dict(sorted(prompt.items()))
negative_prompt = dict(sorted(negative_prompt.items()))
# Ensure that we have a prompt for the last frame index
prompt[num_frames - 1] = prompt[list(prompt.keys())[-1]]
negative_prompt[num_frames - 1] = negative_prompt[list(negative_prompt.keys())[-1]]
frame_indices = list(prompt.keys())
frame_prompts = list(prompt.values())
frame_negative_indices = list(negative_prompt.keys())
frame_negative_prompts = list(negative_prompt.values())
# Generate and interpolate positive prompts
prompt_embeds, _ = self.encode_prompt(
prompt=frame_prompts,
device=device,
num_images_per_prompt=num_videos_per_prompt,
do_classifier_free_guidance=False,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
lora_scale=lora_scale,
clip_skip=clip_skip,
)
shape = (num_frames, *prompt_embeds.shape[1:])
prompt_interpolation_embeds = prompt_embeds.new_zeros(shape)
for i in range(len(frame_indices) - 1):
start_frame = frame_indices[i]
end_frame = frame_indices[i + 1]
start_tensor = prompt_embeds[i].unsqueeze(0)
end_tensor = prompt_embeds[i + 1].unsqueeze(0)
prompt_interpolation_embeds[start_frame : end_frame + 1] = self._free_noise_prompt_interpolation_callback(
start_frame, end_frame, start_tensor, end_tensor
)
# Generate and interpolate negative prompts
negative_prompt_embeds = None
negative_prompt_interpolation_embeds = None
if do_classifier_free_guidance:
_, negative_prompt_embeds = self.encode_prompt(
prompt=[""] * len(frame_negative_prompts),
device=device,
num_images_per_prompt=num_videos_per_prompt,
do_classifier_free_guidance=True,
negative_prompt=frame_negative_prompts,
prompt_embeds=None,
negative_prompt_embeds=None,
lora_scale=lora_scale,
clip_skip=clip_skip,
)
negative_prompt_interpolation_embeds = negative_prompt_embeds.new_zeros(shape)
for i in range(len(frame_negative_indices) - 1):
start_frame = frame_negative_indices[i]
end_frame = frame_negative_indices[i + 1]
start_tensor = negative_prompt_embeds[i].unsqueeze(0)
end_tensor = negative_prompt_embeds[i + 1].unsqueeze(0)
negative_prompt_interpolation_embeds[start_frame : end_frame + 1] = (
self._free_noise_prompt_interpolation_callback(start_frame, end_frame, start_tensor, end_tensor)
)
prompt_embeds = prompt_interpolation_embeds
negative_prompt_embeds = negative_prompt_interpolation_embeds
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds, negative_prompt_embeds
def _prepare_latents_free_noise(
self,
batch_size: int,
num_channels_latents: int,
num_frames: int,
height: int,
width: int,
dtype: torch.dtype,
device: torch.device,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.Tensor] = None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
context_num_frames = (
self._free_noise_context_length if self._free_noise_context_length == "repeat_context" else num_frames
)
shape = (
batch_size,
num_channels_latents,
context_num_frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
if self._free_noise_noise_type == "random":
return latents
else:
if latents.size(2) == num_frames:
return latents
elif latents.size(2) != self._free_noise_context_length:
raise ValueError(
f"You have passed `latents` as a parameter to FreeNoise. The expected number of frames is either {num_frames} or {self._free_noise_context_length}, but found {latents.size(2)}"
)
latents = latents.to(device)
if self._free_noise_noise_type == "shuffle_context":
for i in range(self._free_noise_context_length, num_frames, self._free_noise_context_stride):
# ensure window is within bounds
window_start = max(0, i - self._free_noise_context_length)
window_end = min(num_frames, window_start + self._free_noise_context_stride)
window_length = window_end - window_start
if window_length == 0:
break
indices = torch.LongTensor(list(range(window_start, window_end)))
shuffled_indices = indices[torch.randperm(window_length, generator=generator)]
current_start = i
current_end = min(num_frames, current_start + window_length)
if current_end == current_start + window_length:
# batch of frames perfectly fits the window
latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices]
else:
# handle the case where the last batch of frames does not fit perfectly with the window
prefix_length = current_end - current_start
shuffled_indices = shuffled_indices[:prefix_length]
latents[:, :, current_start:current_end] = latents[:, :, shuffled_indices]
elif self._free_noise_noise_type == "repeat_context":
num_repeats = (num_frames + self._free_noise_context_length - 1) // self._free_noise_context_length
latents = torch.cat([latents] * num_repeats, dim=2)
latents = latents[:, :, :num_frames]
return latents
def _lerp(
self, start_index: int, end_index: int, start_tensor: torch.Tensor, end_tensor: torch.Tensor
) -> torch.Tensor:
num_indices = end_index - start_index + 1
interpolated_tensors = []
for i in range(num_indices):
alpha = i / (num_indices - 1)
interpolated_tensor = (1 - alpha) * start_tensor + alpha * end_tensor
interpolated_tensors.append(interpolated_tensor)
interpolated_tensors = torch.cat(interpolated_tensors)
return interpolated_tensors
def enable_free_noise(
self,
context_length: Optional[int] = 16,
context_stride: int = 4,
weighting_scheme: str = "pyramid",
noise_type: str = "shuffle_context",
prompt_interpolation_callback: Optional[
Callable[[DiffusionPipeline, int, int, torch.Tensor, torch.Tensor], torch.Tensor]
] = None,
) -> None:
r"""
Enable long video generation using FreeNoise.
Args:
context_length (`int`, defaults to `16`, *optional*):
The number of video frames to process at once. It's recommended to set this to the maximum frames the
Motion Adapter was trained with (usually 16/24/32). If `None`, the default value from the motion
adapter config is used.
context_stride (`int`, *optional*):
Long videos are generated by processing many frames. FreeNoise processes these frames in sliding
windows of size `context_length`. Context stride allows you to specify how many frames to skip between
each window. For example, a context length of 16 and context stride of 4 would process 24 frames as:
[0, 15], [4, 19], [8, 23] (0-based indexing)
weighting_scheme (`str`, defaults to `pyramid`):
Weighting scheme for averaging latents after accumulation in FreeNoise blocks. The following weighting
schemes are supported currently:
- "flat"
Performs weighting averaging with a flat weight pattern: [1, 1, 1, 1, 1].
- "pyramid"
Performs weighted averaging with a pyramid like weight pattern: [1, 2, 3, 2, 1].
- "delayed_reverse_sawtooth"
Performs weighted averaging with low weights for earlier frames and high-to-low weights for
later frames: [0.01, 0.01, 3, 2, 1].
noise_type (`str`, defaults to "shuffle_context"):
Must be one of ["shuffle_context", "repeat_context", "random"].
- "shuffle_context"
Shuffles a fixed batch of `context_length` latents to create a final latent of size
`num_frames`. This is usually the best setting for most generation scenarios. However, there
might be visible repetition noticeable in the kinds of motion/animation generated.
- "repeated_context"
Repeats a fixed batch of `context_length` latents to create a final latent of size
`num_frames`.
- "random"
The final latents are random without any repetition.
"""
allowed_weighting_scheme = ["flat", "pyramid", "delayed_reverse_sawtooth"]
allowed_noise_type = ["shuffle_context", "repeat_context", "random"]
if context_length > self.motion_adapter.config.motion_max_seq_length:
logger.warning(
f"You have set {context_length=} which is greater than {self.motion_adapter.config.motion_max_seq_length=}. This can lead to bad generation results."
)
if weighting_scheme not in allowed_weighting_scheme:
raise ValueError(
f"The parameter `weighting_scheme` must be one of {allowed_weighting_scheme}, but got {weighting_scheme=}"
)
if noise_type not in allowed_noise_type:
raise ValueError(f"The parameter `noise_type` must be one of {allowed_noise_type}, but got {noise_type=}")
self._free_noise_context_length = context_length or self.motion_adapter.config.motion_max_seq_length
self._free_noise_context_stride = context_stride
self._free_noise_weighting_scheme = weighting_scheme
self._free_noise_noise_type = noise_type
self._free_noise_prompt_interpolation_callback = prompt_interpolation_callback or self._lerp
if hasattr(self.unet.mid_block, "motion_modules"):
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
else:
blocks = [*self.unet.down_blocks, *self.unet.up_blocks]
for block in blocks:
self._enable_free_noise_in_block(block)
def disable_free_noise(self) -> None:
r"""Disable the FreeNoise sampling mechanism."""
self._free_noise_context_length = None
if hasattr(self.unet.mid_block, "motion_modules"):
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
else:
blocks = [*self.unet.down_blocks, *self.unet.up_blocks]
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
for block in blocks:
self._disable_free_noise_in_block(block)
def _enable_split_inference_motion_modules_(
self, motion_modules: List[AnimateDiffTransformer3D], spatial_split_size: int
) -> None:
for motion_module in motion_modules:
motion_module.proj_in = SplitInferenceModule(motion_module.proj_in, spatial_split_size, 0, ["input"])
for i in range(len(motion_module.transformer_blocks)):
motion_module.transformer_blocks[i] = SplitInferenceModule(
motion_module.transformer_blocks[i],
spatial_split_size,
0,
["hidden_states", "encoder_hidden_states"],
)
motion_module.proj_out = SplitInferenceModule(motion_module.proj_out, spatial_split_size, 0, ["input"])
def _enable_split_inference_attentions_(
self, attentions: List[Transformer2DModel], temporal_split_size: int
) -> None:
for i in range(len(attentions)):
attentions[i] = SplitInferenceModule(
attentions[i], temporal_split_size, 0, ["hidden_states", "encoder_hidden_states"]
)
def _enable_split_inference_resnets_(self, resnets: List[ResnetBlock2D], temporal_split_size: int) -> None:
for i in range(len(resnets)):
resnets[i] = SplitInferenceModule(resnets[i], temporal_split_size, 0, ["input_tensor", "temb"])
def _enable_split_inference_samplers_(
self, samplers: Union[List[Downsample2D], List[Upsample2D]], temporal_split_size: int
) -> None:
for i in range(len(samplers)):
samplers[i] = SplitInferenceModule(samplers[i], temporal_split_size, 0, ["hidden_states"])
def enable_free_noise_split_inference(self, spatial_split_size: int = 256, temporal_split_size: int = 16) -> None:
r"""
Enable FreeNoise memory optimizations by utilizing
[`~diffusers.pipelines.free_noise_utils.SplitInferenceModule`] across different intermediate modeling blocks.
Args:
spatial_split_size (`int`, defaults to `256`):
The split size across spatial dimensions for internal blocks. This is used in facilitating split
inference across the effective batch dimension (`[B x H x W, F, C]`) of intermediate tensors in motion
modeling blocks.
temporal_split_size (`int`, defaults to `16`):
The split size across temporal dimensions for internal blocks. This is used in facilitating split
inference across the effective batch dimension (`[B x F, H x W, C]`) of intermediate tensors in spatial
attention, resnets, downsampling and upsampling blocks.
"""
# TODO(aryan): Discuss on what's the best way to provide more control to users
blocks = [*self.unet.down_blocks, self.unet.mid_block, *self.unet.up_blocks]
for block in blocks:
if getattr(block, "motion_modules", None) is not None:
self._enable_split_inference_motion_modules_(block.motion_modules, spatial_split_size)
if getattr(block, "attentions", None) is not None:
self._enable_split_inference_attentions_(block.attentions, temporal_split_size)
if getattr(block, "resnets", None) is not None:
self._enable_split_inference_resnets_(block.resnets, temporal_split_size)
if getattr(block, "downsamplers", None) is not None:
self._enable_split_inference_samplers_(block.downsamplers, temporal_split_size)
if getattr(block, "upsamplers", None) is not None:
self._enable_split_inference_samplers_(block.upsamplers, temporal_split_size)
@property
def free_noise_enabled(self):
return hasattr(self, "_free_noise_context_length") and self._free_noise_context_length is not None
|