Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,287 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
from contextlib import nullcontext
import torch
from accelerate import init_empty_weights
from diffusers import (
SanaControlNetModel,
)
from diffusers.models.modeling_utils import load_model_dict_into_meta
from diffusers.utils.import_utils import is_accelerate_available
CTX = init_empty_weights if is_accelerate_available else nullcontext
def main(args):
file_path = args.orig_ckpt_path
all_state_dict = torch.load(file_path, weights_only=True)
state_dict = all_state_dict.pop("state_dict")
converted_state_dict = {}
# Patch embeddings.
converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")
# Caption projection.
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")
# AdaLN-single LN
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
"t_embedder.mlp.0.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
"t_embedder.mlp.2.weight"
)
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")
# Shared norm.
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")
# y norm
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")
# Positional embedding interpolation scale.
interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}
# ControlNet Input Projection.
converted_state_dict["input_block.weight"] = state_dict.pop("controlnet.0.before_proj.weight")
converted_state_dict["input_block.bias"] = state_dict.pop("controlnet.0.before_proj.bias")
for depth in range(7):
# Transformer blocks.
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
f"controlnet.{depth}.copied_block.scale_shift_table"
)
# Linear Attention is all you need 🤘
# Self attention.
q, k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.attn.qkv.weight"), 3, dim=0)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
# Projection.
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.attn.proj.bias"
)
# Feed-forward.
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.bias"
)
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.mlp.point_conv.conv.weight"
)
# Cross-attention.
q = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.weight")
q_bias = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.bias")
k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.weight"), 2, dim=0)
k_bias, v_bias = torch.chunk(
state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.bias"), 2, dim=0
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
f"controlnet.{depth}.copied_block.cross_attn.proj.weight"
)
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
f"controlnet.{depth}.copied_block.cross_attn.proj.bias"
)
# ControlNet After Projection
converted_state_dict[f"controlnet_blocks.{depth}.weight"] = state_dict.pop(
f"controlnet.{depth}.after_proj.weight"
)
converted_state_dict[f"controlnet_blocks.{depth}.bias"] = state_dict.pop(f"controlnet.{depth}.after_proj.bias")
# ControlNet
with CTX():
controlnet = SanaControlNetModel(
num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"],
attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"],
num_layers=model_kwargs[args.model_type]["num_layers"],
num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"],
cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"],
cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"],
caption_channels=2304,
sample_size=args.image_size // 32,
interpolation_scale=interpolation_scale[args.image_size],
)
if is_accelerate_available():
load_model_dict_into_meta(controlnet, converted_state_dict)
else:
controlnet.load_state_dict(converted_state_dict, strict=True, assign=True)
num_model_params = sum(p.numel() for p in controlnet.parameters())
print(f"Total number of controlnet parameters: {num_model_params}")
controlnet = controlnet.to(weight_dtype)
controlnet.load_state_dict(converted_state_dict, strict=True)
print(f"Saving Sana ControlNet in Diffusers format in {args.dump_path}.")
controlnet.save_pretrained(args.dump_path)
DTYPE_MAPPING = {
"fp32": torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}
VARIANT_MAPPING = {
"fp32": None,
"fp16": "fp16",
"bf16": "bf16",
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--orig_ckpt_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument(
"--image_size",
default=1024,
type=int,
choices=[512, 1024, 2048, 4096],
required=False,
help="Image size of pretrained model, 512, 1024, 2048 or 4096.",
)
parser.add_argument(
"--model_type",
default="SanaMS_1600M_P1_ControlNet_D7",
type=str,
choices=["SanaMS_1600M_P1_ControlNet_D7", "SanaMS_600M_P1_ControlNet_D7"],
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")
args = parser.parse_args()
model_kwargs = {
"SanaMS_1600M_P1_ControlNet_D7": {
"num_attention_heads": 70,
"attention_head_dim": 32,
"num_cross_attention_heads": 20,
"cross_attention_head_dim": 112,
"cross_attention_dim": 2240,
"num_layers": 7,
},
"SanaMS_600M_P1_ControlNet_D7": {
"num_attention_heads": 36,
"attention_head_dim": 32,
"num_cross_attention_heads": 16,
"cross_attention_head_dim": 72,
"cross_attention_dim": 1152,
"num_layers": 7,
},
}
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = DTYPE_MAPPING[args.dtype]
variant = VARIANT_MAPPING[args.dtype]
main(args)
|