Update app.py
Browse files
app.py
CHANGED
@@ -1,121 +1,103 @@
|
|
1 |
import gradio as gr
|
2 |
-
from roboflow import Roboflow
|
3 |
-
import tempfile
|
4 |
import os
|
5 |
-
|
6 |
-
import
|
7 |
import cv2
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
|
11 |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
12 |
model = project.version(16).model
|
13 |
|
14 |
-
#
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
boxes = np.array(boxes)
|
27 |
-
scores = np.array(scores)
|
28 |
-
classes = np.array(classes)
|
29 |
|
30 |
-
|
31 |
-
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), score_threshold=0.25, nms_threshold=iou_threshold)
|
32 |
-
nms_predictions = []
|
33 |
|
34 |
-
for
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
'confidence': scores[i]
|
39 |
-
})
|
40 |
|
41 |
-
|
|
|
|
|
42 |
|
43 |
-
#
|
44 |
-
def detect_objects(image):
|
45 |
-
# Menyimpan gambar sementara
|
46 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
47 |
image.save(temp_file, format="JPEG")
|
48 |
temp_file_path = temp_file.name
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
|
53 |
-
output_file_name="sliced_image",
|
54 |
-
output_dir="/tmp/sliced/",
|
55 |
-
slice_height=256,
|
56 |
-
slice_width=256,
|
57 |
-
overlap_height_ratio=0.1,
|
58 |
-
overlap_width_ratio=0.1
|
59 |
-
)
|
60 |
-
|
61 |
-
# Print to check the available attributes of the slice_image_result object
|
62 |
-
print(f"Slice result: {slice_image_result}")
|
63 |
-
|
64 |
-
# Try accessing the sliced image paths from the result object
|
65 |
-
try:
|
66 |
-
sliced_image_paths = slice_image_result.sliced_image_paths # Assuming this is the correct attribute
|
67 |
-
print(f"Sliced image paths: {sliced_image_paths}")
|
68 |
-
except AttributeError:
|
69 |
-
print("Failed to access sliced_image_paths attribute.")
|
70 |
-
sliced_image_paths = []
|
71 |
-
|
72 |
-
# Menyimpan semua prediksi untuk setiap potongan gambar
|
73 |
-
all_predictions = []
|
74 |
-
|
75 |
-
# Prediksi pada setiap potongan gambar
|
76 |
-
for sliced_image_path in sliced_image_paths:
|
77 |
-
if isinstance(sliced_image_path, str):
|
78 |
-
predictions = model.predict(image_path=sliced_image_path).json()
|
79 |
-
all_predictions.extend(predictions['predictions'])
|
80 |
-
else:
|
81 |
-
print(f"Skipping invalid image path: {sliced_image_path}")
|
82 |
-
|
83 |
-
# Aplikasikan NMS untuk menghapus duplikat deteksi
|
84 |
-
postprocessed_predictions = apply_nms(all_predictions, iou_threshold=0.5)
|
85 |
|
86 |
-
#
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
#
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
if class_name in class_count:
|
98 |
class_count[class_name] += 1
|
99 |
else:
|
100 |
class_count[class_name] = 1
|
101 |
|
102 |
-
#
|
103 |
-
result_text = "
|
104 |
for class_name, count in class_count.items():
|
105 |
-
result_text += f"{class_name}: {count}
|
106 |
|
107 |
-
#
|
108 |
os.remove(temp_file_path)
|
109 |
|
110 |
-
return
|
111 |
|
112 |
-
#
|
113 |
iface = gr.Interface(
|
114 |
-
fn=detect_objects,
|
115 |
-
inputs=gr.Image(type="pil"),
|
116 |
-
outputs=
|
117 |
-
live=True
|
118 |
)
|
119 |
|
120 |
-
#
|
121 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
3 |
+
import tempfile
|
4 |
+
import math
|
5 |
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import supervision as sv
|
8 |
+
from roboflow import Roboflow
|
9 |
|
10 |
+
# Initialize Roboflow
|
11 |
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
|
12 |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
13 |
model = project.version(16).model
|
14 |
|
15 |
+
# Helper function for SAHI (Supervision Slicing)
|
16 |
+
def calculate_tile_size(image_shape: tuple[int, int], tiles: tuple[int, int], overlap_ratio_wh: tuple[float, float] = (0.0, 0.0)):
|
17 |
+
w, h = image_shape
|
18 |
+
rows, columns = tiles
|
19 |
+
tile_width = math.ceil(w / columns * (1 + overlap_ratio_wh[0]))
|
20 |
+
tile_height = math.ceil(h / rows * (1 + overlap_ratio_wh[1]))
|
21 |
+
overlap_wh = (math.ceil(tile_width * overlap_ratio_wh[0]), math.ceil(tile_height * overlap_ratio_wh[1]))
|
22 |
+
return (tile_width, tile_height), overlap_wh
|
23 |
|
24 |
+
# Function to handle inference and tiles
|
25 |
+
def detect_objects(image):
|
26 |
+
# Convert PIL image to NumPy array (for OpenCV compatibility)
|
27 |
+
img = np.array(image) # Gradio image is in PIL format, convert it to NumPy array
|
28 |
+
img_rgb = img # Keep the image as RGB format, avoid unnecessary conversion to BGR
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
image_shape = (img.shape[1], img.shape[0])
|
|
|
|
|
31 |
|
32 |
+
# Parameters for slicing (tiles and overlap)
|
33 |
+
tiles = (8, 8) # Use 8x8 tiles for better detection of small objects
|
34 |
+
overlap_ratio_wh = (0.2, 0.2) # 20% overlap between tiles for better context
|
35 |
+
slice_wh, overlap_wh = calculate_tile_size(image_shape, tiles, overlap_ratio_wh)
|
|
|
|
|
36 |
|
37 |
+
# Generate offsets but don't visualize the tiles with rectangles (remove the drawing step)
|
38 |
+
offsets = sv.InferenceSlicer._generate_offset(image_shape, slice_wh, None, overlap_wh)
|
39 |
+
tiled_image = img_rgb.copy()
|
40 |
|
41 |
+
# Save the PIL image to a temporary file for Roboflow model prediction
|
|
|
|
|
42 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
43 |
image.save(temp_file, format="JPEG")
|
44 |
temp_file_path = temp_file.name
|
45 |
|
46 |
+
# Annotate with Roboflow model predictions using the temporary file path
|
47 |
+
predictions = model.predict(temp_file_path, confidence=40, overlap=30).json() # Adjusted confidence for small object detection
|
48 |
+
class_count = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Define a color palette for different classes
|
51 |
+
color_palette = {
|
52 |
+
"bearbrand": (0, 255, 0), # Green for class 1
|
53 |
+
"nescafe latte": (0, 0, 255), # Red for class 2
|
54 |
+
"nescafe original": (255, 0, 0), # Blue for class 3
|
55 |
+
"nescafe mocha": (0, 255, 255) # Yellow for class 4
|
56 |
+
#"class_5": (255, 0, 255) # Magenta for class 5
|
57 |
+
# You can add more colors based on the number of classes you have
|
58 |
+
}
|
59 |
|
60 |
+
# Draw bounding boxes with different colors and label classes
|
61 |
+
for prediction in predictions['predictions']:
|
62 |
+
x1 = int(prediction['x'] - prediction['width'] / 2)
|
63 |
+
y1 = int(prediction['y'] - prediction['height'] / 2)
|
64 |
+
x2 = int(prediction['x'] + prediction['width'] / 2)
|
65 |
+
y2 = int(prediction['y'] + prediction['height'] / 2)
|
66 |
|
67 |
+
class_name = prediction['class']
|
68 |
+
|
69 |
+
# Choose a color for the class, if the class is not in the palette, use white
|
70 |
+
box_color = color_palette.get(class_name, (255, 255, 255))
|
71 |
+
|
72 |
+
# Draw a bounding box around the detected object
|
73 |
+
cv2.rectangle(tiled_image, (x1, y1), (x2, y2), box_color, 2) # Bounding box with thickness=2
|
74 |
+
|
75 |
+
# Put the class name label on the bounding box
|
76 |
+
cv2.putText(tiled_image, class_name, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, box_color, 2) # Label
|
77 |
+
|
78 |
+
# Count the class occurrences
|
79 |
if class_name in class_count:
|
80 |
class_count[class_name] += 1
|
81 |
else:
|
82 |
class_count[class_name] = 1
|
83 |
|
84 |
+
# Create a result text to show class counts
|
85 |
+
result_text = "Object counts per class:\n"
|
86 |
for class_name, count in class_count.items():
|
87 |
+
result_text += f"{class_name}: {count} objects\n"
|
88 |
|
89 |
+
# Remove the temporary file after processing
|
90 |
os.remove(temp_file_path)
|
91 |
|
92 |
+
return result_text # Only return result_text for object counting
|
93 |
|
94 |
+
# Gradio Interface
|
95 |
iface = gr.Interface(
|
96 |
+
fn=detect_objects,
|
97 |
+
inputs=gr.Image(type="pil"),
|
98 |
+
outputs=gr.Textbox(), # Only output the text with object counts
|
99 |
+
live=True
|
100 |
)
|
101 |
|
102 |
+
# Launch Gradio app
|
103 |
+
iface.launch(debug=True)
|