Rename app-complete-mantab.py to app.py
Browse files- app-complete-mantab.py → app.py +19 -15
app-complete-mantab.py → app.py
RENAMED
@@ -23,7 +23,7 @@ model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
|
23 |
|
24 |
# DINO-X Config
|
25 |
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
|
26 |
-
DINOX_PROMPT = "beverage . bottle . cans" # Customize sesuai produk kompetitor : food . drink
|
27 |
|
28 |
# Inisialisasi Model
|
29 |
rf = Roboflow(api_key=rf_api_key)
|
@@ -41,7 +41,7 @@ def detect_combined(image):
|
|
41 |
|
42 |
try:
|
43 |
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
|
44 |
-
yolo_pred = yolo_model.predict(temp_path, confidence=
|
45 |
|
46 |
# Hitung per class Nestlé
|
47 |
nestle_class_count = {}
|
@@ -85,15 +85,13 @@ def detect_combined(image):
|
|
85 |
result_text = "Product Nestle\n\n"
|
86 |
for class_name, count in nestle_class_count.items():
|
87 |
result_text += f"{class_name}: {count}\n"
|
88 |
-
result_text += f"\nTotal
|
89 |
|
90 |
-
result_text += "Competitor Products\n\n"
|
91 |
if competitor_class_count:
|
92 |
-
|
93 |
-
result_text += f"{class_name}: {count}\n"
|
94 |
else:
|
95 |
-
result_text += "No
|
96 |
-
result_text += f"\nTotal Competitor: {total_competitor}"
|
97 |
|
98 |
# ========== [4] Visualisasi ==========
|
99 |
img = cv2.imread(temp_path)
|
@@ -105,13 +103,20 @@ def detect_combined(image):
|
|
105 |
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
|
106 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
107 |
|
108 |
-
# Kompetitor (Merah)
|
109 |
for comp in competitor_boxes:
|
110 |
x1, y1, x2, y2 = comp['box']
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
output_path = "/tmp/combined_output.jpg"
|
116 |
cv2.imwrite(output_path, img)
|
117 |
|
@@ -186,7 +191,7 @@ def detect_objects_in_video(video_path):
|
|
186 |
cv2.imwrite(frame_path, frame)
|
187 |
|
188 |
# Process predictions for frame
|
189 |
-
predictions = yolo_model.predict(frame_path, confidence=
|
190 |
|
191 |
# Update class count for this frame
|
192 |
frame_class_count = {}
|
@@ -210,7 +215,6 @@ def detect_objects_in_video(video_path):
|
|
210 |
nestle_total = sum(all_class_count.values())
|
211 |
|
212 |
# Create a vertical layout for counts (dynamically updated)
|
213 |
-
count_text = "Cumulative Object Counts\n"
|
214 |
for class_name, count in all_class_count.items():
|
215 |
count_text += f"{class_name}: {count}\n"
|
216 |
count_text += f"\nTotal Product Nestlé: {nestle_total}"
|
|
|
23 |
|
24 |
# DINO-X Config
|
25 |
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
|
26 |
+
DINOX_PROMPT = "beverage . bottle . cans . boxed milk . milk" # Customize sesuai produk kompetitor : food . drink
|
27 |
|
28 |
# Inisialisasi Model
|
29 |
rf = Roboflow(api_key=rf_api_key)
|
|
|
41 |
|
42 |
try:
|
43 |
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
|
44 |
+
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
45 |
|
46 |
# Hitung per class Nestlé
|
47 |
nestle_class_count = {}
|
|
|
85 |
result_text = "Product Nestle\n\n"
|
86 |
for class_name, count in nestle_class_count.items():
|
87 |
result_text += f"{class_name}: {count}\n"
|
88 |
+
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
|
89 |
|
90 |
+
#result_text += "Competitor Products\n\n"
|
91 |
if competitor_class_count:
|
92 |
+
result_text += f"Total Unclassified Products: {total_competitor}\n" # Hanya total, tidak per kelas
|
|
|
93 |
else:
|
94 |
+
result_text += "No Unclassified Products detected\n"
|
|
|
95 |
|
96 |
# ========== [4] Visualisasi ==========
|
97 |
img = cv2.imread(temp_path)
|
|
|
103 |
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
|
104 |
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
105 |
|
106 |
+
# Kompetitor (Merah) dengan nama 'unclassified'
|
107 |
for comp in competitor_boxes:
|
108 |
x1, y1, x2, y2 = comp['box']
|
109 |
+
|
110 |
+
# Define a list of target classes to rename
|
111 |
+
unclassified_classes = ["beverage", "cans", "bottle", "boxed milk", "milk"]
|
112 |
+
|
113 |
+
# Normalize the class name to be case-insensitive and check if it's in the unclassified list
|
114 |
+
display_name = "unclassified" if any(class_name in comp['class'].lower() for class_name in unclassified_classes) else comp['class']
|
115 |
+
|
116 |
+
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
117 |
+
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
|
118 |
+
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
119 |
+
|
120 |
output_path = "/tmp/combined_output.jpg"
|
121 |
cv2.imwrite(output_path, img)
|
122 |
|
|
|
191 |
cv2.imwrite(frame_path, frame)
|
192 |
|
193 |
# Process predictions for frame
|
194 |
+
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
195 |
|
196 |
# Update class count for this frame
|
197 |
frame_class_count = {}
|
|
|
215 |
nestle_total = sum(all_class_count.values())
|
216 |
|
217 |
# Create a vertical layout for counts (dynamically updated)
|
|
|
218 |
for class_name, count in all_class_count.items():
|
219 |
count_text += f"{class_name}: {count}\n"
|
220 |
count_text += f"\nTotal Product Nestlé: {nestle_total}"
|