Delete app.py
Browse files
app.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from roboflow import Roboflow
|
3 |
-
import tempfile
|
4 |
-
import os
|
5 |
-
from sahi.slicing import slice_image
|
6 |
-
import numpy as np
|
7 |
-
import cv2
|
8 |
-
from PIL import Image, ImageDraw
|
9 |
-
|
10 |
-
# Initialize Roboflow
|
11 |
-
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
|
12 |
-
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
13 |
-
model = project.version(20).model
|
14 |
-
|
15 |
-
def apply_nms(predictions, iou_threshold=0.5):
|
16 |
-
boxes = []
|
17 |
-
scores = []
|
18 |
-
classes = []
|
19 |
-
|
20 |
-
# Extract boxes, scores, and class info
|
21 |
-
for prediction in predictions:
|
22 |
-
# Construct the bounding box from x, y, width, height
|
23 |
-
x = prediction['x']
|
24 |
-
y = prediction['y']
|
25 |
-
width = prediction['width']
|
26 |
-
height = prediction['height']
|
27 |
-
box = [x, y, width, height]
|
28 |
-
|
29 |
-
boxes.append(box)
|
30 |
-
scores.append(prediction['confidence'])
|
31 |
-
classes.append(prediction['class'])
|
32 |
-
|
33 |
-
boxes = np.array(boxes)
|
34 |
-
scores = np.array(scores)
|
35 |
-
classes = np.array(classes)
|
36 |
-
|
37 |
-
# Perform NMS using OpenCV
|
38 |
-
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), score_threshold=0.25, nms_threshold=iou_threshold)
|
39 |
-
|
40 |
-
print(f"Predictions before NMS: {predictions}")
|
41 |
-
print(f"Indices after NMS: {indices}")
|
42 |
-
|
43 |
-
# Check if indices is empty or invalid
|
44 |
-
if indices is None or len(indices) == 0:
|
45 |
-
print("No valid indices returned from NMS.")
|
46 |
-
return [] # Return an empty list if no valid indices are found
|
47 |
-
|
48 |
-
# Flatten indices array (if returned as a tuple)
|
49 |
-
indices = indices.flatten()
|
50 |
-
|
51 |
-
nms_predictions = []
|
52 |
-
|
53 |
-
for i in indices:
|
54 |
-
nms_predictions.append({
|
55 |
-
'class': classes[i],
|
56 |
-
'bbox': boxes[i], # Now using the constructed box
|
57 |
-
'confidence': scores[i]
|
58 |
-
})
|
59 |
-
|
60 |
-
return nms_predictions
|
61 |
-
|
62 |
-
# Detect objects and annotate the image
|
63 |
-
def detect_objects(image):
|
64 |
-
# Save the image temporarily
|
65 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
66 |
-
image.save(temp_file, format="JPEG")
|
67 |
-
temp_file_path = temp_file.name
|
68 |
-
|
69 |
-
# Slice the image into smaller pieces
|
70 |
-
slice_image_result = slice_image(
|
71 |
-
image=temp_file_path,
|
72 |
-
output_file_name="sliced_image",
|
73 |
-
output_dir="/tmp/sliced/",
|
74 |
-
slice_height=256,
|
75 |
-
slice_width=256,
|
76 |
-
overlap_height_ratio=0.1,
|
77 |
-
overlap_width_ratio=0.1
|
78 |
-
)
|
79 |
-
|
80 |
-
# Print to check the available attributes of the slice_image_result object
|
81 |
-
print(f"Slice result: {slice_image_result}")
|
82 |
-
|
83 |
-
# Try accessing the sliced image paths from the result object
|
84 |
-
try:
|
85 |
-
sliced_image_paths = slice_image_result.sliced_image_paths # Assuming this is the correct attribute
|
86 |
-
print(f"Sliced image paths: {sliced_image_paths}")
|
87 |
-
except AttributeError:
|
88 |
-
print("Failed to access sliced_image_paths attribute.")
|
89 |
-
sliced_image_paths = []
|
90 |
-
|
91 |
-
# Check predictions for the whole image first
|
92 |
-
print("Predicting on the whole image (without slicing)...")
|
93 |
-
whole_image_predictions = model.predict(image_path=temp_file_path).json()
|
94 |
-
print(f"Whole image predictions: {whole_image_predictions}")
|
95 |
-
|
96 |
-
# If there are predictions, return them
|
97 |
-
if whole_image_predictions['predictions']:
|
98 |
-
print("Using predictions from the whole image.")
|
99 |
-
all_predictions = whole_image_predictions['predictions']
|
100 |
-
else:
|
101 |
-
print("No predictions found for the whole image. Predicting on slices...")
|
102 |
-
# If no predictions for the whole image, predict on slices
|
103 |
-
all_predictions = []
|
104 |
-
|
105 |
-
for sliced_image_path in sliced_image_paths:
|
106 |
-
if isinstance(sliced_image_path, str):
|
107 |
-
predictions = model.predict(image_path=sliced_image_path).json()
|
108 |
-
all_predictions.extend(predictions['predictions'])
|
109 |
-
else:
|
110 |
-
print(f"Skipping invalid image path: {sliced_image_path}")
|
111 |
-
|
112 |
-
# Apply NMS to remove duplicate detections
|
113 |
-
postprocessed_predictions = apply_nms(all_predictions, iou_threshold=0.5)
|
114 |
-
|
115 |
-
# Annotate the image with prediction results using OpenCV
|
116 |
-
img = cv2.imread(temp_file_path)
|
117 |
-
for prediction in postprocessed_predictions:
|
118 |
-
class_name = prediction['class']
|
119 |
-
bbox = prediction['bbox']
|
120 |
-
confidence = prediction['confidence']
|
121 |
-
|
122 |
-
# Unpack the bounding box coordinates
|
123 |
-
x, y, w, h = map(int, bbox)
|
124 |
-
|
125 |
-
# Draw the bounding box and label on the image
|
126 |
-
color = (0, 255, 0) # Green color for the box
|
127 |
-
thickness = 2
|
128 |
-
cv2.rectangle(img, (x, y), (x + w, y + h), color, thickness)
|
129 |
-
|
130 |
-
label = f"{class_name}: {confidence:.2f}"
|
131 |
-
cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness)
|
132 |
-
|
133 |
-
# Convert the image from BGR to RGB for PIL compatibility
|
134 |
-
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
135 |
-
annotated_image = Image.fromarray(img_rgb)
|
136 |
-
|
137 |
-
# Save the annotated image
|
138 |
-
output_image_path = "/tmp/prediction.jpg"
|
139 |
-
annotated_image.save(output_image_path)
|
140 |
-
|
141 |
-
# Count objects per class
|
142 |
-
class_count = {}
|
143 |
-
for detection in postprocessed_predictions:
|
144 |
-
class_name = detection['class']
|
145 |
-
if class_name in class_count:
|
146 |
-
class_count[class_name] += 1
|
147 |
-
else:
|
148 |
-
class_count[class_name] = 1
|
149 |
-
|
150 |
-
# Object count result
|
151 |
-
result_text = "Jumlah objek per kelas:\n"
|
152 |
-
for class_name, count in class_count.items():
|
153 |
-
result_text += f"{class_name}: {count} objek\n"
|
154 |
-
|
155 |
-
# Remove temporary file
|
156 |
-
os.remove(temp_file_path)
|
157 |
-
|
158 |
-
return output_image_path, result_text
|
159 |
-
|
160 |
-
# Gradio interface
|
161 |
-
iface = gr.Interface(
|
162 |
-
fn=detect_objects, # Function called when image is uploaded
|
163 |
-
inputs=gr.Image(type="pil"), # Input is an image
|
164 |
-
outputs=[gr.Image(), gr.Textbox()], # Output is an image and text
|
165 |
-
live=True # Display results live
|
166 |
-
)
|
167 |
-
|
168 |
-
# Run the interface
|
169 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|