muhammadsalmanalfaridzi commited on
Commit
426695e
·
verified ·
1 Parent(s): c66a6f5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -4
app.py CHANGED
@@ -5,6 +5,7 @@ import tempfile
5
  import os
6
  import requests
7
  from sahi.predict import get_sliced_prediction # SAHI slicing inference
 
8
 
9
  # Muat variabel lingkungan dari file .env
10
  load_dotenv()
@@ -30,10 +31,10 @@ def detect_objects(image):
30
  result = get_sliced_prediction(
31
  temp_file_path,
32
  model,
33
- slice_height=256, # Adjust as needed
34
- slice_width=256, # Adjust as needed
35
- overlap_height_ratio=0.2, # Adjust as needed
36
- overlap_width_ratio=0.2 # Adjust as needed
37
  )
38
 
39
  # Menghitung jumlah objek per kelas
@@ -56,6 +57,19 @@ def detect_objects(image):
56
  result.export_visuals(export_dir="/tmp/") # Export visuals for display
57
  output_image_path = "/tmp/prediction_visual.png" # Assuming the visual output is saved here
58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  except requests.exceptions.HTTPError as http_err:
60
  # Menangani kesalahan HTTP
61
  result_text = f"HTTP error occurred: {http_err}"
 
5
  import os
6
  import requests
7
  from sahi.predict import get_sliced_prediction # SAHI slicing inference
8
+ import supervision as sv # For annotating images with results
9
 
10
  # Muat variabel lingkungan dari file .env
11
  load_dotenv()
 
31
  result = get_sliced_prediction(
32
  temp_file_path,
33
  model,
34
+ slice_height=256, # Adjust slice height as needed
35
+ slice_width=256, # Adjust slice width as needed
36
+ overlap_height_ratio=0.2, # Adjust overlap height ratio as needed
37
+ overlap_width_ratio=0.2 # Adjust overlap width ratio as needed
38
  )
39
 
40
  # Menghitung jumlah objek per kelas
 
57
  result.export_visuals(export_dir="/tmp/") # Export visuals for display
58
  output_image_path = "/tmp/prediction_visual.png" # Assuming the visual output is saved here
59
 
60
+ # Annotating the image with the detections (optional)
61
+ label_annotator = sv.LabelAnnotator()
62
+ box_annotator = sv.BoxAnnotator()
63
+
64
+ annotated_image = box_annotator.annotate(
65
+ scene=image.copy(), detections=result.object_prediction_list)
66
+
67
+ annotated_image = label_annotator.annotate(
68
+ scene=annotated_image, detections=result.object_prediction_list)
69
+
70
+ # Save the annotated image
71
+ annotated_image.save(output_image_path)
72
+
73
  except requests.exceptions.HTTPError as http_err:
74
  # Menangani kesalahan HTTP
75
  result_text = f"HTTP error occurred: {http_err}"