muhammadsalmanalfaridzi's picture
Update app.py
b6dcd04 verified
raw
history blame
5.89 kB
import gradio as gr
from roboflow import Roboflow
import tempfile
import os
from sahi.slicing import slice_image
import numpy as np
import cv2
from PIL import Image, ImageDraw
# Initialize Roboflow
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
model = project.version(16).model
def apply_nms(predictions, iou_threshold=0.5):
boxes = []
scores = []
classes = []
# Extract boxes, scores, and class info
for prediction in predictions:
# Construct the bounding box from x, y, width, height
x = prediction['x']
y = prediction['y']
width = prediction['width']
height = prediction['height']
box = [x, y, width, height]
boxes.append(box)
scores.append(prediction['confidence'])
classes.append(prediction['class'])
boxes = np.array(boxes)
scores = np.array(scores)
classes = np.array(classes)
# Perform NMS using OpenCV
indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), score_threshold=0.25, nms_threshold=iou_threshold)
print(f"Predictions before NMS: {predictions}")
print(f"Indices after NMS: {indices}")
# Check if indices is empty or invalid
if indices is None or len(indices) == 0:
print("No valid indices returned from NMS.")
return [] # Return an empty list if no valid indices are found
# Flatten indices array (if returned as a tuple)
indices = indices.flatten()
nms_predictions = []
for i in indices:
nms_predictions.append({
'class': classes[i],
'bbox': boxes[i], # Now using the constructed box
'confidence': scores[i]
})
return nms_predictions
# Detect objects and annotate the image
def detect_objects(image):
# Save the image temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
# Slice the image into smaller pieces
slice_image_result = slice_image(
image=temp_file_path,
output_file_name="sliced_image",
output_dir="/tmp/sliced/",
slice_height=256,
slice_width=256,
overlap_height_ratio=0.1,
overlap_width_ratio=0.1
)
# Print to check the available attributes of the slice_image_result object
print(f"Slice result: {slice_image_result}")
# Try accessing the sliced image paths from the result object
try:
sliced_image_paths = slice_image_result.sliced_image_paths # Assuming this is the correct attribute
print(f"Sliced image paths: {sliced_image_paths}")
except AttributeError:
print("Failed to access sliced_image_paths attribute.")
sliced_image_paths = []
# Check predictions for the whole image first
print("Predicting on the whole image (without slicing)...")
whole_image_predictions = model.predict(image_path=temp_file_path).json()
print(f"Whole image predictions: {whole_image_predictions}")
# If there are predictions, return them
if whole_image_predictions['predictions']:
print("Using predictions from the whole image.")
all_predictions = whole_image_predictions['predictions']
else:
print("No predictions found for the whole image. Predicting on slices...")
# If no predictions for the whole image, predict on slices
all_predictions = []
for sliced_image_path in sliced_image_paths:
if isinstance(sliced_image_path, str):
predictions = model.predict(image_path=sliced_image_path).json()
all_predictions.extend(predictions['predictions'])
else:
print(f"Skipping invalid image path: {sliced_image_path}")
# Apply NMS to remove duplicate detections
postprocessed_predictions = apply_nms(all_predictions, iou_threshold=0.5)
# Annotate the image with prediction results using OpenCV
img = cv2.imread(temp_file_path)
for prediction in postprocessed_predictions:
class_name = prediction['class']
bbox = prediction['bbox']
confidence = prediction['confidence']
# Unpack the bounding box coordinates
x, y, w, h = map(int, bbox)
# Draw the bounding box and label on the image
color = (0, 255, 0) # Green color for the box
thickness = 2
cv2.rectangle(img, (x, y), (x + w, y + h), color, thickness)
label = f"{class_name}: {confidence:.2f}"
cv2.putText(img, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, thickness)
# Convert the image from BGR to RGB for PIL compatibility
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
annotated_image = Image.fromarray(img_rgb)
# Save the annotated image
output_image_path = "/tmp/prediction.jpg"
annotated_image.save(output_image_path)
# Count objects per class
class_count = {}
for detection in postprocessed_predictions:
class_name = detection['class']
if class_name in class_count:
class_count[class_name] += 1
else:
class_count[class_name] = 1
# Object count result
result_text = "Jumlah objek per kelas:\n"
for class_name, count in class_count.items():
result_text += f"{class_name}: {count} objek\n"
# Remove temporary file
os.remove(temp_file_path)
return output_image_path, result_text
# Gradio interface
iface = gr.Interface(
fn=detect_objects, # Function called when image is uploaded
inputs=gr.Image(type="pil"), # Input is an image
outputs=[gr.Image(), gr.Textbox()], # Output is an image and text
live=True # Display results live
)
# Run the interface
iface.launch()