Spaces:
Build error
Build error
import gradio as gr | |
import supervision as sv | |
import numpy as np | |
import cv2 | |
from inference import get_roboflow_model | |
# Replace with your actual Roboflow model ID and API key | |
model_id = "nescafe-4base/46" # Replace with your Roboflow model ID | |
api_key = "Otg64Ra6wNOgDyjuhMYU" # Replace with your Roboflow API key | |
# Load the Roboflow model using the get_roboflow_model function | |
model = get_roboflow_model(model_id=model_id, api_key=api_key) | |
# Define the callback function for the SAHI slicer | |
def callback(image_slice: np.ndarray) -> sv.Detections: | |
# Run inference on the image slice | |
results = model.infer(image_slice) | |
# Check if results are in the expected format and handle accordingly | |
if isinstance(results, tuple): | |
results = results[0] # Extract the detections from the tuple if necessary | |
# If the results are a list (likely from Roboflow), access them correctly | |
detections = [] | |
if isinstance(results, list): | |
for result in results: | |
# Ensure each result is processed into a Detections object | |
detections.extend(sv.Detections.from_inference(result)) | |
# Return the list of detections | |
return detections | |
# Initialize the SAHI Inference Slicer | |
slicer = sv.InferenceSlicer(callback=callback) | |
# Function to handle image processing, inference, and annotation | |
def process_image(image): | |
# Convert the PIL image to OpenCV format (BGR) | |
image = np.array(image) | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# Run inference using SAHI (splitting the image into slices) | |
sliced_detections = slicer(image=image) | |
# Annotate the detections with bounding boxes and labels | |
label_annotator = sv.LabelAnnotator() | |
box_annotator = sv.BoxAnnotator() | |
annotated_image = box_annotator.annotate(scene=image.copy(), detections=sliced_detections) | |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=sliced_detections) | |
# Convert the annotated image back to RGB for display in Gradio | |
result_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) | |
# Count the number of objects detected | |
class_count = {} | |
for detection in sliced_detections: | |
class_name = detection.class_name | |
class_count[class_name] = class_count.get(class_name, 0) + 1 | |
total_count = sum(class_count.values()) | |
return result_image, class_count, total_count | |
# Gradio interface | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil", label="Upload Image"), | |
outputs=[gr.Image(type="pil", label="Annotated Image"), | |
gr.JSON(label="Object Count"), | |
gr.Number(label="Total Objects Detected")], | |
live=True | |
) | |
# Launch the Gradio interface | |
iface.launch() |