|
import gradio as gr |
|
import supervision as sv |
|
import numpy as np |
|
import cv2 |
|
from inference import get_roboflow_model |
|
|
|
|
|
model_id = "nescafe-4base/46" |
|
api_key = "Otg64Ra6wNOgDyjuhMYU" |
|
|
|
|
|
model = get_roboflow_model(model_id=model_id, api_key=api_key) |
|
|
|
|
|
def callback(image_slice: np.ndarray) -> sv.Detections: |
|
|
|
results = model.infer(image_slice) |
|
|
|
|
|
if isinstance(results, tuple): |
|
results = results[0] |
|
|
|
|
|
detections = [] |
|
if isinstance(results, list): |
|
for result in results: |
|
|
|
detections.extend(sv.Detections.from_inference(result)) |
|
|
|
|
|
return detections |
|
|
|
|
|
slicer = sv.InferenceSlicer(callback=callback) |
|
|
|
|
|
def process_image(image): |
|
|
|
image = np.array(image) |
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
sliced_detections = slicer(image=image) |
|
|
|
|
|
label_annotator = sv.LabelAnnotator() |
|
box_annotator = sv.BoxAnnotator() |
|
|
|
annotated_image = box_annotator.annotate(scene=image.copy(), detections=sliced_detections) |
|
annotated_image = label_annotator.annotate(scene=annotated_image, detections=sliced_detections) |
|
|
|
|
|
result_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
class_count = {} |
|
for detection in sliced_detections: |
|
class_name = detection.class_name |
|
class_count[class_name] = class_count.get(class_name, 0) + 1 |
|
|
|
total_count = sum(class_count.values()) |
|
|
|
return result_image, class_count, total_count |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_image, |
|
inputs=gr.Image(type="pil", label="Upload Image"), |
|
outputs=[gr.Image(type="pil", label="Annotated Image"), |
|
gr.JSON(label="Object Count"), |
|
gr.Number(label="Total Objects Detected")], |
|
live=True |
|
) |
|
|
|
|
|
iface.launch() |