Spaces:
Build error
Build error
import gradio as gr | |
from dotenv import load_dotenv | |
from roboflow import Roboflow | |
import tempfile | |
import os | |
import requests | |
from PIL import Image | |
# Muat variabel lingkungan dari file .env | |
load_dotenv() | |
api_key = os.getenv("ROBOFLOW_API_KEY") | |
workspace = os.getenv("ROBOFLOW_WORKSPACE") | |
project_name = os.getenv("ROBOFLOW_PROJECT") | |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) | |
# Inisialisasi Roboflow menggunakan data yang diambil dari secrets | |
rf = Roboflow(api_key=api_key) | |
project = rf.workspace(workspace).project(project_name) | |
model = project.version(model_version).model | |
# Fungsi untuk memotong gambar menjadi potongan-potongan kecil | |
def slice_image(image, slice_size=512, overlap=0): | |
width, height = image.size | |
slices = [] | |
step = slice_size - overlap | |
for top in range(0, height, step): | |
for left in range(0, width, step): | |
bottom = min(top + slice_size, height) | |
right = min(left + slice_size, width) | |
slices.append((left, top, right, bottom)) | |
return slices | |
# Fungsi untuk menangani input dan output gambar | |
def detect_objects(image): | |
slice_size = 512 | |
overlap = 50 | |
# Potong gambar menjadi bagian kecil | |
slices = slice_image(image, slice_size, overlap) | |
results = [] | |
class_count = {} | |
total_count = 0 | |
for i, (left, top, right, bottom) in enumerate(slices): | |
sliced_image = image.crop((left, top, right, bottom)) | |
# Simpan gambar slice sementara | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
sliced_image.save(temp_file, format="JPEG") | |
temp_file_path = temp_file.name | |
try: | |
# Lakukan prediksi pada setiap slice | |
predictions = model.predict(temp_file_path, confidence=60, overlap=80).json() | |
for prediction in predictions['predictions']: | |
prediction["left"] += left | |
prediction["top"] += top | |
prediction["right"] += left | |
prediction["bottom"] += top | |
results.append(prediction) | |
# Perbarui jumlah objek per kelas | |
class_name = prediction['class'] | |
class_count[class_name] = class_count.get(class_name, 0) + 1 | |
total_count += 1 | |
except requests.exceptions.HTTPError as http_err: | |
return f"HTTP error occurred: {http_err}", None | |
except Exception as err: | |
return f"An error occurred: {err}", None | |
finally: | |
os.remove(temp_file_path) | |
# Gabungkan hasil deteksi | |
result_text = "Product Nestle\n\n" | |
for class_name, count in class_count.items(): | |
result_text += f"{class_name}: {count}\n" | |
result_text += f"\nTotal Product Nestle: {total_count}" | |
# Kembalikan hasil | |
return image, result_text | |
# Membuat antarmuka Gradio dengan tata letak fleksibel | |
with gr.Blocks() as iface: | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Detect Object") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Counting Object") | |
# Tombol untuk memproses input | |
detect_button = gr.Button("Detect") | |
# Hubungkan tombol dengan fungsi deteksi | |
detect_button.click( | |
fn=detect_objects, | |
inputs=input_image, | |
outputs=[output_image, output_text] | |
) | |
# Menjalankan antarmuka | |
iface.launch() | |