Last commit not found
import gradio as gr | |
from roboflow import Roboflow | |
import tempfile | |
import os | |
# Inisialisasi Roboflow | |
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU") | |
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base") | |
model = project.version(16).model | |
# Fungsi untuk menangani input dan output gambar | |
def detect_objects(image): | |
# Menyimpan gambar yang diupload sebagai file sementara | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
image.save(temp_file, format="JPEG") | |
temp_file_path = temp_file.name | |
# Lakukan prediksi pada gambar | |
predictions = model.predict(temp_file_path, confidence=50, overlap=80).json() | |
# Menghitung jumlah objek per kelas | |
class_count = {} | |
for prediction in predictions['predictions']: | |
class_name = prediction['class'] | |
if class_name in class_count: | |
class_count[class_name] += 1 | |
else: | |
class_count[class_name] = 1 | |
# Menyusun output berupa string hasil perhitungan | |
result_text = "Jumlah objek per kelas:\n" | |
for class_name, count in class_count.items(): | |
result_text += f"{class_name}: {count} objek\n" | |
# Menyimpan gambar dengan prediksi | |
output_image = model.predict(temp_file_path, confidence=50, overlap=80).save("/tmp/prediction.jpg") | |
# Hapus file sementara setelah prediksi | |
os.remove(temp_file_path) | |
return "/tmp/prediction.jpg", result_text | |
# Membuat antarmuka Gradio | |
iface = gr.Interface( | |
fn=detect_objects, # Fungsi yang dipanggil saat gambar diupload | |
inputs=gr.Image(type="pil"), # Input berupa gambar | |
outputs=[gr.Image(), gr.Textbox()], # Output gambar dan teks | |
live=True # Menampilkan hasil secara langsung | |
) | |
# Menjalankan antarmuka | |
iface.launch() | |