File size: 6,593 Bytes
a05a995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
from PIL import Image
import tempfile
import os
import requests
import cv2
import numpy as np
import subprocess

# ========== Konfigurasi ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# OWLv2 Config
OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY")
OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"]

# Inisialisasi Model YOLO
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

# ========== Fungsi Deteksi Kombinasi ==========
# Fungsi untuk deteksi dengan resize
def detect_combined(image):
    # Simpan gambar input ke file sementara
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name

    try:
        # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()

        # Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height))
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        total_nestle = sum(nestle_class_count.values())

        # ========== [2] OWLv2: Deteksi Kompetitor ==========
        
        headers = {
            "Authorization": "Basic " + OWLV2_API_KEY,
        }
        data = {
            "prompts": OWLV2_PROMPTS,
            "model": "owlv2",
            "confidence": 0.25  # Set confidence threshold to 0.25
        }
        with open(temp_path, "rb") as f:
            files = {"image": f}
            response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers)
        result = response.json()
        owlv2_objects = result['data'][0] if 'data' in result else []

        competitor_class_count = {}
        competitor_boxes = []
        for obj in owlv2_objects:
            if 'bounding_box' in obj:
                bbox = obj['bounding_box']  # Format: [x1, y1, x2, y2]
                # Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
                if not is_overlap(bbox, nestle_boxes):
                    class_name = obj.get('label', 'unknown').strip().lower()
                    competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                    competitor_boxes.append({
                        "class": class_name,
                        "box": bbox,
                        "confidence": obj.get("score", 0)
                    })

        total_competitor = sum(competitor_class_count.values())

        # ========== [3] Format Output ==========
        result_text = "Product Nestle\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
        if competitor_class_count:
            result_text += f"Total Unclassified Products: {total_competitor}\n"
        else:
            result_text += "No Unclassified Products detected\n"

        # ========== [4] Visualisasi ==========
        img = cv2.imread(temp_path)

        # Gambar bounding box untuk produk Nestlé (Hijau)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
            cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

        # Gambar bounding box untuk kompetitor (Merah) dengan label 'unclassified' jika sesuai
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            unclassified_classes = ["cans"]
            display_name = "unclassified" if any(cls in comp['class'].lower() for cls in unclassified_classes) else comp['class']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
                        (int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)

        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)

        return output_path, result_text

    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        os.remove(temp_path)

def is_overlap(box1, boxes2, threshold=0.3):
    """
    Fungsi untuk mendeteksi overlap bounding box.
    Parameter:
      - box1: Bounding box pertama dengan format (x1, y1, x2, y2)
      - boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height)
    """
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2

        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
        with gr.Column():
            output_image = gr.Image(label="Detect Object")
        with gr.Column():
            output_text = gr.Textbox(label="Counting Object")
    
    # Tombol untuk memproses input
    detect_button = gr.Button("Detect")
    
    # Hubungkan tombol dengan fungsi deteksi
    detect_button.click(
        fn=detect_combined, 
        inputs=input_image, 
        outputs=[output_image, output_text]
    )

iface.launch()