File size: 9,275 Bytes
d57ee17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cafafb9
d57ee17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506fa35
d57ee17
 
506fa35
 
271eeb8
 
506fa35
 
 
 
 
 
 
 
 
 
 
 
d57ee17
 
 
 
 
 
 
 
 
 
 
 
 
 
24fe9dc
d57ee17
 
 
 
 
b22ce7a
e188b58
 
 
 
 
d57ee17
 
 
dbf91f6
b554d7e
94533df
dbf91f6
 
 
 
 
b554d7e
 
 
dbf91f6
b554d7e
dbf91f6
 
 
 
 
b554d7e
94533df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import supervision as sv

# ========== Konfigurasi ========== 
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle"  # Customize sesuai produk kompetitor : food . drink

# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)

# ========== Fungsi Deteksi Kombinasi ========== 
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name

    try:
        # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ========== 
        yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()

        # Hitung per class Nestlé
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))

        total_nestle = sum(nestle_class_count.values())

        # ========== [2] DINO-X: Deteksi Kompetitor ========== 
        image_url = dinox_client.upload_file(temp_path)
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=DINOX_PROMPT)],
            bbox_threshold=0.25,
            targets=[DetectionTarget.BBox]
        )
        dinox_client.run_task(task)
        dinox_pred = task.result.objects

        # Filter & Hitung Kompetitor
        competitor_class_count = {}
        competitor_boxes = []
        for obj in dinox_pred:
            dinox_box = obj.bbox
            if not is_overlap(dinox_box, nestle_boxes):
                class_name = obj.category.strip().lower()  # Normalisasi nama kelas
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": dinox_box,
                    "confidence": obj.score
                })

        total_competitor = sum(competitor_class_count.values())

        # ========== [3] Format Output ========== 
        result_text = "Product Nestle\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"

        result_text += "Competitor Products\n\n"
        if competitor_class_count:
            for class_name, count in competitor_class_count.items():
                result_text += f"{class_name}: {count}\n"
        else:
            result_text += "No competitors detected\n"
        result_text += f"\nTotal Competitor: {total_competitor}"

        # ========== [4] Visualisasi ========== 
        img = cv2.imread(temp_path)

        # Nestlé (Hijau)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
            cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), 
                       cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)

        # Kompetitor (Merah)
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
            cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}", 
                       (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2)

        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)

        return output_path, result_text

    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        os.remove(temp_path)

def is_overlap(box1, boxes2, threshold=0.3):
    # Fungsi untuk deteksi overlap bounding box
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2

        # Hitung area overlap
        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Fungsi untuk Deteksi Video ========== 
def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()

    try:
        # Baca video dan ekstrak frame
        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)
        frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))

        # VideoWriter untuk membuat video keluaran
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        frame_index = 0
        while True:
            ret, frame = video.read()
            if not ret:
                break

            # Simpan frame sementara untuk prediksi
            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_index}.jpg")
            cv2.imwrite(frame_path, frame)

            # Deteksi objek pada frame
            predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()

            # Hitung objek per kelas
            class_count = {}
            for prediction in predictions['predictions']:
                class_name = prediction['class']
                class_count[class_name] = class_count.get(class_name, 0) + 1

            # Menyusun teks untuk jumlah objek yang terdeteksi (vertikal)
            text_offset = 30  # Jarak antara setiap baris teks
            y_position = 30  # Posisi Y awal untuk menampilkan teks
            for class_name, count in class_count.items():
                # Menulis teks untuk setiap kelas
                cv2.putText(frame, f"{class_name}: {count}", (10, y_position), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2, cv2.LINE_AA)
                y_position += text_offset  # Geser posisi teks untuk baris berikutnya

            # Gambar bounding box pada objek
            for prediction in predictions['predictions']:
                x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
                class_name = prediction['class']
                color = (0, 255, 0)  # Hijau
                cv2.rectangle(frame, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), color, 2)
                cv2.putText(frame, class_name, (int(x - w/2), int(y - h/2 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

            # Tambahkan frame ke video keluaran
            output_video.write(frame)
            frame_index += 1

        video.release()
        output_video.release()

        return temp_output_path  # Return only the output video path, no message.

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ========== 
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""
    <div style="text-align: center;">
        <h1>NESTLE - STOCK COUNTING</h1>
    </div>
    """)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(
                fn=detect_combined,
                inputs=input_image,
                outputs=[output_image, output_text]
            )

        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(
                fn=detect_objects_in_video,
                inputs=input_video,
                outputs=[output_video]
            )

iface.launch()