File size: 9,275 Bytes
d57ee17 cafafb9 d57ee17 506fa35 d57ee17 506fa35 271eeb8 506fa35 d57ee17 24fe9dc d57ee17 b22ce7a e188b58 d57ee17 dbf91f6 b554d7e 94533df dbf91f6 b554d7e dbf91f6 b554d7e dbf91f6 b554d7e 94533df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import supervision as sv
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle" # Customize sesuai produk kompetitor : food . drink
# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()
# Hitung per class Nestlé
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] DINO-X: Deteksi Kompetitor ==========
image_url = dinox_client.upload_file(temp_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=DINOX_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox]
)
dinox_client.run_task(task)
dinox_pred = task.result.objects
# Filter & Hitung Kompetitor
competitor_class_count = {}
competitor_boxes = []
for obj in dinox_pred:
dinox_box = obj.bbox
if not is_overlap(dinox_box, nestle_boxes):
class_name = obj.category.strip().lower() # Normalisasi nama kelas
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": dinox_box,
"confidence": obj.score
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"
result_text += "Competitor Products\n\n"
if competitor_class_count:
for class_name, count in competitor_class_count.items():
result_text += f"{class_name}: {count}\n"
else:
result_text += "No competitors detected\n"
result_text += f"\nTotal Competitor: {total_competitor}"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# Kompetitor (Merah)
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
def is_overlap(box1, boxes2, threshold=0.3):
# Fungsi untuk deteksi overlap bounding box
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
# Hitung area overlap
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Fungsi untuk Deteksi Video ==========
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
try:
# Baca video dan ekstrak frame
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
# VideoWriter untuk membuat video keluaran
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
frame_index = 0
while True:
ret, frame = video.read()
if not ret:
break
# Simpan frame sementara untuk prediksi
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_index}.jpg")
cv2.imwrite(frame_path, frame)
# Deteksi objek pada frame
predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()
# Hitung objek per kelas
class_count = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
class_count[class_name] = class_count.get(class_name, 0) + 1
# Menyusun teks untuk jumlah objek yang terdeteksi (vertikal)
text_offset = 30 # Jarak antara setiap baris teks
y_position = 30 # Posisi Y awal untuk menampilkan teks
for class_name, count in class_count.items():
# Menulis teks untuk setiap kelas
cv2.putText(frame, f"{class_name}: {count}", (10, y_position),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2, cv2.LINE_AA)
y_position += text_offset # Geser posisi teks untuk baris berikutnya
# Gambar bounding box pada objek
for prediction in predictions['predictions']:
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
class_name = prediction['class']
color = (0, 255, 0) # Hijau
cv2.rectangle(frame, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), color, 2)
cv2.putText(frame, class_name, (int(x - w/2), int(y - h/2 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
# Tambahkan frame ke video keluaran
output_video.write(frame)
frame_index += 1
video.release()
output_video.release()
return temp_output_path # Return only the output video path, no message.
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""
<div style="text-align: center;">
<h1>NESTLE - STOCK COUNTING</h1>
</div>
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(
fn=detect_combined,
inputs=input_image,
outputs=[output_image, output_text]
)
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(
fn=detect_objects_in_video,
inputs=input_video,
outputs=[output_video]
)
iface.launch()
|