File size: 8,374 Bytes
cf51dd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import supervision as sv
# ========== Configuration ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle" # Customize for competitor products
# Initialize Models
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)
# ========== Combined Detection Function ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# [1] YOLO: Detect Nestlé Products
yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# [2] DINO-X: Detect Competitor Products
image_url = dinox_client.upload_file(temp_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=DINOX_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox]
)
dinox_client.run_task(task)
dinox_pred = task.result.objects
# Filter & Count Competitors
competitor_class_count = {}
competitor_boxes = []
for obj in dinox_pred:
dinox_box = obj.bbox
if not is_overlap(dinox_box, nestle_boxes):
class_name = obj.category.strip().lower()
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": dinox_box,
"confidence": obj.score
})
total_competitor = sum(competitor_class_count.values())
# [3] Format Output
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"
result_text += "Competitor Products\n\n"
if competitor_class_count:
for class_name, count in competitor_class_count.items():
result_text += f"{class_name}: {count}\n"
else:
result_text += "No competitors detected\n"
result_text += f"\nTotal Competitor: {total_competitor}"
# [4] Visualization
img = cv2.imread(temp_path)
# Nestlé (Green)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0, 255, 0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# Competitors (Red)
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
if os.path.exists(temp_path):
os.remove(temp_path)
# ========== Overlap Detection Function ==========
def is_overlap(box1, boxes2, threshold=0.3):
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Video Detection Function ==========
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
try:
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
frame_index = 0
while True:
ret, frame = video.read()
if not ret:
break
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_index}.jpg")
cv2.imwrite(frame_path, frame)
predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()
class_count = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
class_count[class_name] = class_count.get(class_name, 0) + 1
text_offset = 30
y_position = 30
for class_name, count in class_count.items():
cv2.putText(frame, f"{class_name}: {count}", (10, y_position),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2, cv2.LINE_AA)
y_position += text_offset
for prediction in predictions['predictions']:
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
cv2.rectangle(frame, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
cv2.putText(frame, prediction['class'], (int(x - w/2), int(y - h/2 - 10)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
output_video.write(frame)
frame_index += 1
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""
<div style="text-align: center;">
<h1>NESTLE - STOCK COUNTING</h1>
</div>
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(
fn=detect_combined,
inputs=input_image,
outputs=[output_image, output_text]
)
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(
fn=detect_objects_in_video,
inputs=input_video,
outputs=[output_video]
)
iface.launch() |