File size: 8,374 Bytes
cf51dd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import supervision as sv

# ========== Configuration ==========
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle"  # Customize for competitor products

# Initialize Models
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)

# ========== Combined Detection Function ==========
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name
    try:
        # [1] YOLO: Detect Nestlé Products
        yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json()
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
        total_nestle = sum(nestle_class_count.values())

        # [2] DINO-X: Detect Competitor Products
        image_url = dinox_client.upload_file(temp_path)
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=DINOX_PROMPT)],
            bbox_threshold=0.25,
            targets=[DetectionTarget.BBox]
        )
        dinox_client.run_task(task)
        dinox_pred = task.result.objects

        # Filter & Count Competitors
        competitor_class_count = {}
        competitor_boxes = []
        for obj in dinox_pred:
            dinox_box = obj.bbox
            if not is_overlap(dinox_box, nestle_boxes):
                class_name = obj.category.strip().lower()
                competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                competitor_boxes.append({
                    "class": class_name,
                    "box": dinox_box,
                    "confidence": obj.score
                })
        total_competitor = sum(competitor_class_count.values())

        # [3] Format Output
        result_text = "Product Nestle\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Product Nestle: {total_nestle}\n\n"
        result_text += "Competitor Products\n\n"
        if competitor_class_count:
            for class_name, count in competitor_class_count.items():
                result_text += f"{class_name}: {count}\n"
        else:
            result_text += "No competitors detected\n"
        result_text += f"\nTotal Competitor: {total_competitor}"

        # [4] Visualization
        img = cv2.imread(temp_path)
        # Nestlé (Green)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0, 255, 0), 2)
            cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), 
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
        # Competitors (Red)
        for comp in competitor_boxes:
            x1, y1, x2, y2 = comp['box']
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
            cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}", 
                        (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)
        return output_path, result_text
    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    finally:
        if os.path.exists(temp_path):
            os.remove(temp_path)

# ========== Overlap Detection Function ==========
def is_overlap(box1, boxes2, threshold=0.3):
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2
        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Video Detection Function ==========
def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    try:
        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
        frame_index = 0
        while True:
            ret, frame = video.read()
            if not ret:
                break
            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_index}.jpg")
            cv2.imwrite(frame_path, frame)
            predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()
            class_count = {}
            for prediction in predictions['predictions']:
                class_name = prediction['class']
                class_count[class_name] = class_count.get(class_name, 0) + 1
            text_offset = 30
            y_position = 30
            for class_name, count in class_count.items():
                cv2.putText(frame, f"{class_name}: {count}", (10, y_position), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2, cv2.LINE_AA)
                y_position += text_offset
            for prediction in predictions['predictions']:
                x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
                cv2.rectangle(frame, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
                cv2.putText(frame, prediction['class'], (int(x - w/2), int(y - h/2 - 10)), 
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
            output_video.write(frame)
            frame_index += 1
        video.release()
        output_video.release()
        return temp_output_path
    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""
    <div style="text-align: center;">
        <h1>NESTLE - STOCK COUNTING</h1>
    </div>
    """)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(
                fn=detect_combined,
                inputs=input_image,
                outputs=[output_image, output_text]
            )
        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(
                fn=detect_objects_in_video,
                inputs=input_video,
                outputs=[output_video]
            )
iface.launch()