File size: 2,837 Bytes
fcf6ad5
 
 
 
3e8a5f8
 
 
fcf6ad5
3e8a5f8
fcf6ad5
 
8f29306
fcf6ad5
3e8a5f8
fcf6ad5
3e8a5f8
fcf6ad5
 
 
 
3e8a5f8
 
 
 
 
 
 
 
 
 
6b64c3f
3e8a5f8
 
 
 
21a3b22
3e8a5f8
 
 
 
 
 
6b64c3f
3e8a5f8
 
 
 
 
 
6b64c3f
3e8a5f8
 
6b64c3f
3e8a5f8
 
 
6b64c3f
fcf6ad5
 
3e8a5f8
6b64c3f
fcf6ad5
 
 
 
 
6b64c3f
fcf6ad5
 
 
6b64c3f
3e8a5f8
 
 
 
fcf6ad5
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr
from roboflow import Roboflow
import tempfile
import os
from sahi.slicing import slice_image
from sahi import get_sliced_prediction
from sahi.postprocess import postprocess_predictions

# Inisialisasi Roboflow (for model path)
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
model = project.version(16).model

# Fungsi untuk deteksi objek menggunakan SAHI
def detect_objects(image):
    # Menyimpan gambar sementara
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_file_path = temp_file.name

    # Slice gambar menjadi potongan-potongan kecil
    slice_image_result = slice_image(
        image=temp_file_path,
        output_file_name="sliced_image",
        output_dir="/tmp/sliced/",
        slice_height=256,
        slice_width=256,
        overlap_height_ratio=0.1,
        overlap_width_ratio=0.1
    )

    # Jalankan prediksi pada setiap potongan gambar
    predictions = get_sliced_prediction(
        image_path=temp_file_path,
        model_path="path_to_your_model",
        model_type="yolov8",  # Adjust based on your model
        slice_height=256,
        slice_width=256,
        overlap_height_ratio=0.1,
        overlap_width_ratio=0.1,
        model_confidence_threshold=0.25
    )

    # Postprocess dan gabungkan hasil prediksi
    postprocessed_predictions = postprocess_predictions(
        predictions=predictions,
        postprocess_type='NMS',
        iou_threshold=0.5
    )

    # Annotate gambar dengan hasil prediksi
    annotated_image = model.annotate_image_with_predictions(temp_file_path, postprocessed_predictions)

    # Simpan gambar hasil annotasi
    output_image_path = "/tmp/prediction.jpg"
    annotated_image.save(output_image_path)

    # Menghitung jumlah objek per kelas
    class_count = {}
    for detection in postprocessed_predictions:
        class_name = detection.class_name
        if class_name in class_count:
            class_count[class_name] += 1
        else:
            class_count[class_name] = 1

    # Hasil perhitungan objek
    result_text = "Jumlah objek per kelas:\n"
    for class_name, count in class_count.items():
        result_text += f"{class_name}: {count} objek\n"

    # Hapus file sementara
    os.remove(temp_file_path)

    return output_image_path, result_text

# Membuat antarmuka Gradio
iface = gr.Interface(
    fn=detect_objects,                         # Fungsi yang dipanggil saat gambar diupload
    inputs=gr.Image(type="pil"),               # Input berupa gambar
    outputs=[gr.Image(), gr.Textbox()],        # Output gambar dan teks
    live=True                                    # Menampilkan hasil secara langsung
)

# Menjalankan antarmuka
iface.launch()