File size: 9,765 Bytes
bd977a3
bf1fd9f
 
 
 
 
 
0f3d01e
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56ff081
bf1fd9f
56ff081
bf1fd9f
 
 
 
 
 
 
 
56ff081
 
 
 
 
7397c8b
56ff081
 
 
bf1fd9f
 
56ff081
 
 
 
 
 
 
bf1fd9f
56ff081
 
 
bf1fd9f
 
56ff081
 
 
 
bf1fd9f
 
 
 
56ff081
 
 
 
 
 
bf1fd9f
 
 
56ff081
bf1fd9f
 
56ff081
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3d01e
bf1fd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import subprocess

# ========== Konfigurasi ========== 
load_dotenv()

# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))

# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle . cans . mixed box"  # Customize sesuai produk kompetitor : food . drink

# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model

dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)

# ========== Fungsi Deteksi Kombinasi ========== 
def detect_combined(image):
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_path = temp_file.name
    
    try:
        # YOLO Detection (Nestlé products)
        yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
        nestle_class_count = {}
        nestle_boxes = []
        for pred in yolo_pred['predictions']:
            class_name = pred['class']
            nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
            nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
        total_nestle = sum(nestle_class_count.values())
        
        # CountGD Detection (Competitor products)
        url = "https://api.landing.ai/v1/tools/text-to-object-detection"
        files = {"image": open(temp_path, "rb")}
        data = {"prompts": ["mixed box"], "model": "countgd"}
        headers = {"Authorization": "Basic YOUR_API_KEY"}  # Replace with actual API key
        response = requests.post(url, files=files, data=data, headers=headers)
        result = response.json()
        
        competitor_class_count = {}
        competitor_boxes = []
        if 'data' in result:
            for obj in result['data'][0]:
                if 'bounding_box' in obj:
                    x, y, x2, y2 = obj['bounding_box']
                    class_name = "unclassified"  # CountGD does not classify, so use generic label
                    competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
                    competitor_boxes.append((x, y, x2, y2))
        total_competitor = sum(competitor_class_count.values())
        
        # Format Output
        result_text = "Product Nestlé\n\n"
        for class_name, count in nestle_class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
        result_text += f"Total Unclassified Products: {total_competitor}\n" if total_competitor else "No Unclassified Products detected\n"
        
        # Visualization
        img = cv2.imread(temp_path)
        for pred in yolo_pred['predictions']:
            x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
            cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
            cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
        
        for x1, y1, x2, y2 in competitor_boxes:
            cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
            cv2.putText(img, "unclassified", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
        
        output_path = "/tmp/combined_output.jpg"
        cv2.imwrite(output_path, img)
        return output_path, result_text
    
    except Exception as e:
        return temp_path, f"Error: {str(e)}"
    
    finally:
        os.remove(temp_path)

def is_overlap(box1, boxes2, threshold=0.3):
    # Fungsi untuk deteksi overlap bounding box
    x1_min, y1_min, x1_max, y1_max = box1
    for b2 in boxes2:
        x2, y2, w2, h2 = b2
        x2_min = x2 - w2/2
        x2_max = x2 + w2/2
        y2_min = y2 - h2/2
        y2_max = y2 + h2/2

        # Hitung area overlap
        dx = min(x1_max, x2_max) - max(x1_min, x2_min)
        dy = min(y1_max, y2_max) - max(y1_min, y2_min)
        if (dx >= 0) and (dy >= 0):
            area_overlap = dx * dy
            area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
            if area_overlap / area_box1 > threshold:
                return True
    return False

# ========== Fungsi untuk Deteksi Video ========== 

def convert_video_to_mp4(input_path, output_path):
    try:
        subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
        return output_path
    except subprocess.CalledProcessError as e:
        return None, f"Error converting video: {e}"

def detect_objects_in_video(video_path):
    temp_output_path = "/tmp/output_video.mp4"
    temp_frames_dir = tempfile.mkdtemp()
    frame_count = 0
    previous_detections = {}  # For storing previous frame's object detections

    try:
        # Convert video to MP4 if necessary
        if not video_path.endswith(".mp4"):
            video_path, err = convert_video_to_mp4(video_path, temp_output_path)
            if not video_path:
                return None, f"Video conversion error: {err}"

        # Read video and process frames
        video = cv2.VideoCapture(video_path)
        frame_rate = int(video.get(cv2.CAP_PROP_FPS))
        frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        frame_size = (frame_width, frame_height)

        # VideoWriter for output video
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)

        while True:
            ret, frame = video.read()
            if not ret:
                break

            # Save frame temporarily for predictions
            frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
            cv2.imwrite(frame_path, frame)

            # Process predictions for the current frame
            predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()

            # Track current frame detections
            current_detections = {}
            for prediction in predictions['predictions']:
                class_name = prediction['class']
                x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
                # Generate a unique ID for each detection based on the bounding box
                object_id = f"{class_name}_{x}_{y}_{w}_{h}"

                # Track each detected object individually
                if object_id not in current_detections:
                    current_detections[object_id] = class_name

                # Draw bounding box for detected objects
                cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
                cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)

            # Update counts for objects
            object_counts = {}
            for detection_id in current_detections.keys():
                class_name = current_detections[detection_id]
                object_counts[class_name] = object_counts.get(class_name, 0) + 1

            # Generate display text for counts
            count_text = ""
            total_product_count = 0
            for class_name, count in object_counts.items():
                count_text += f"{class_name}: {count}\n"
                total_product_count += count
            count_text += f"\nTotal Product: {total_product_count}"

            # Overlay the counts text onto the frame
            y_offset = 20
            for line in count_text.split("\n"):
                cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
                y_offset += 30  # Move down for next line

            # Write processed frame to output video
            output_video.write(frame)
            frame_count += 1

            # Update previous_detections for the next frame
            previous_detections = current_detections

        video.release()
        output_video.release()

        return temp_output_path

    except Exception as e:
        return None, f"An error occurred: {e}"

# ========== Gradio Interface ========== 
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
    gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
            detect_image_button = gr.Button("Detect Image")
            output_image = gr.Image(label="Detect Object")
            output_text = gr.Textbox(label="Counting Object")
            detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])

        with gr.Column():
            input_video = gr.Video(label="Input Video")
            detect_video_button = gr.Button("Detect Video")
            output_video = gr.Video(label="Output Video")
            detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])

iface.launch()