File size: 2,524 Bytes
fcf6ad5 6b64c3f fcf6ad5 8f29306 fcf6ad5 6b64c3f fcf6ad5 6b64c3f fcf6ad5 6b64c3f fcf6ad5 6b64c3f fcf6ad5 6b64c3f fcf6ad5 6b64c3f fcf6ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
from roboflow import Roboflow
import tempfile
import os
import cv2
import supervision as sv
import numpy as np
# Inisialisasi Roboflow
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
model = project.version(16).model
# Fungsi untuk deteksi objek dengan supervision InferenceSlicer
def detect_objects(image):
# Simpan gambar sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
# Membaca gambar dengan OpenCV
img = cv2.imread(temp_file_path)
# Callback function untuk model prediksi
def callback(image_slice: np.ndarray) -> sv.Detections:
# Lakukan inferensi pada setiap potongan gambar
predictions = model.predict(image_slice, confidence=50, overlap=30).json()
return sv.Detections.from_inference(predictions)
# Menggunakan InferenceSlicer
slicer = sv.InferenceSlicer(callback=callback)
# Proses gambar dengan slicer
detections = slicer(img)
# Filter deteksi yang tumpang tindih (gunakan NMM atau tanpa filter)
filtered_detections = detections.filter(strategy=sv.OverlapFilter.NON_MAX_MERGE, iou_threshold=0.5)
# Annotasi gambar dengan deteksi
annotated_image = sv.BoxAnnotator().annotate(scene=img.copy(), detections=filtered_detections)
# Simpan gambar dengan prediksi
output_path = "/tmp/prediction.jpg"
cv2.imwrite(output_path, annotated_image)
# Hapus file sementara
os.remove(temp_file_path)
# Menghitung jumlah objek per kelas
class_count = {}
for detection in filtered_detections:
class_name = detection.class_name
if class_name in class_count:
class_count[class_name] += 1
else:
class_count[class_name] = 1
# Hasil perhitungan objek
result_text = "Jumlah objek per kelas:\n"
for class_name, count in class_count.items():
result_text += f"{class_name}: {count} objek\n"
return output_path, result_text
# Membuat antarmuka Gradio
iface = gr.Interface(
fn=detect_objects, # Fungsi yang dipanggil saat gambar diupload
inputs=gr.Image(type="pil"), # Input berupa gambar
outputs=[gr.Image(), gr.Textbox()], # Output gambar dan teks
live=True # Menampilkan hasil secara langsung
)
# Menjalankan antarmuka
iface.launch()
|