File size: 7,351 Bytes
f8387c1
bfd445f
e98268a
f8387c1
169b5ce
 
 
f8387c1
37ffd3f
f8387c1
c9135a2
094420a
 
c9135a2
f8387c1
 
37ffd3f
 
f8387c1
 
37ffd3f
f8387c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabfbfe
f8387c1
 
 
 
 
 
 
 
 
5f61464
169b5ce
 
 
f8387c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169b5ce
 
 
 
1535a98
ef396f3
1535a98
 
ef396f3
1535a98
 
 
 
094420a
 
 
1535a98
094420a
 
46fc669
98e28e8
 
1535a98
98e28e8
 
37ffd3f
98e28e8
1535a98
37ffd3f
 
 
 
 
 
169b5ce
1535a98
 
62bcdd1
169b5ce
62bcdd1
 
 
169b5ce
62bcdd1
1535a98
62bcdd1
f8387c1
888d73b
 
37ffd3f
93fba37
169b5ce
 
1535a98
169b5ce
 
f8387c1
37ffd3f
f8387c1
1535a98
f8387c1
 
dfc3347
1535a98
f8387c1
dfc3347
169b5ce
 
 
 
 
 
1535a98
28634dd
1535a98
c9135a2
28634dd
 
 
1535a98
c9135a2
28634dd
 
dfc3347
28634dd
67ff76d
1535a98
ef396f3
67ff76d
 
 
ef396f3
1535a98
169b5ce
 
 
 
 
1535a98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import re
import markdown
import gradio as gr
from weasyprint import HTML
from markitdown import MarkItDown
from cerebras.cloud.sdk import Cerebras

# Dapatkan API key dari environment variables
api_key = os.environ.get("CEREBRAS_API_KEY")

# Inisialisasi MarkItDown
md_converter = MarkItDown()

def create_prompt(resume_string: str, jd_string: str) -> str:
    """
    Membuat prompt detail untuk AI agar melakukan optimasi resume
    berdasarkan job description.
    """
    return f"""
You are a professional resume optimization expert specializing in tailoring resumes to specific job descriptions. Your goal is to optimize my resume and provide actionable suggestions for improvement to align with the target role.

### Guidelines:
1. **Relevance**:  
   - Prioritize experiences, skills, and achievements **most relevant to the job description**.  
   - Remove or de-emphasize irrelevant details to ensure a **concise** and **targeted** resume.
   - Limit work experience section to 2-3 most relevant roles
   - Limit bullet points under each role to 2-3 most relevant impacts

2. **Action-Driven Results**:  
   - Use **strong action verbs** and **quantifiable results** (e.g., percentages, revenue, efficiency improvements) to highlight impact.  

3. **Keyword Optimization**:  
   - Integrate **keywords** and phrases from the job description naturally to optimize for ATS (Applicant Tracking Systems).  

4. **Additional Suggestions** *(If Gaps Exist)*:  
   - If the resume does not fully align with the job description, suggest:  
     1. **Additional technical or soft skills** that I could add to make my profile stronger.  
     2. **Certifications or courses** I could pursue to bridge the gap.  
     3. **Project ideas or experiences** that would better align with the role.  

5. **Formatting**:  
   - Output the tailored resume in **clean Markdown format**.  
   - Include an **"Additional Suggestions"** section at the end with actionable improvement recommendations.  

---

### Input:
- **My resume**:  
{resume_string}

- **The job description**:  
{jd_string}

---

### Output:  
1. - A resume in **Markdown format** that emphasizes relevant experience, skills, and achievements.  
   - Incorporates job description **keywords** to optimize for ATS.  
   - Uses strong language and is no longer than **one page**.

2. **Additional Suggestions** *(if applicable)*:  
   - List **skills** that could strengthen alignment with the role.  
   - Recommend **certifications or courses** to pursue.  
   - Suggest **specific projects or experiences** to develop.
"""

def get_resume_response(prompt: str, api_key: str, model: str = "llama-3.3-70b", temperature: float = 0.7) -> str:
    """
    Mengirim prompt ke model Cerebras (LLM) dan mengembalikan hasil streaming response.
    """
    client = Cerebras(api_key=api_key)
    stream = client.chat.completions.create(
        messages=[
            {"role": "system", "content": "Expert resume writer"},
            {"role": "user", "content": prompt}
        ],
        model=model,
        stream=True,
        temperature=temperature,
        max_completion_tokens=1024,
        top_p=1
    )

    response_string = ""
    for chunk in stream:
        response_string += chunk.choices[0].delta.content or ""
    return response_string

def remove_unwanted_headings(markdown_text: str) -> str:
    pattern = r'^#+.*\b(?:[Rr]esume|[Oo]ptimized)\b.*$'
    return re.sub(pattern, '', markdown_text, flags=re.MULTILINE)

def fix_jobsdesk_bullets(text: str) -> str:
    """
    Mengubah semua baris yang dimulai dengan tanda '-' (opsional dengan spasi)
    menjadi format bullet list Markdown standar.
    """
    return re.sub(r'^\s*-\s+', '- ', text, flags=re.MULTILINE)

def process_resume(resume, jd_string):
    # Cek ekstensi dan konversi dokumen menggunakan MarkItDown
    supported_extensions = ('.pptx', '.docx', '.pdf', '.jpg', '.jpeg', '.png', '.xlsx')
    if resume.name.lower().endswith(supported_extensions):
        result = md_converter.convert(resume.name)
        resume_string = result.text_content
    else:
        return "File format not supported for conversion to Markdown.", "", "", "", ""
    
    prompt = create_prompt(resume_string, jd_string)
    response_string = get_resume_response(prompt, api_key)
    
    response_list = response_string.split("## Additional Suggestions")
    new_resume = response_list[0].strip()
    new_resume = re.sub(r'^\* ', '- ', new_resume, flags=re.MULTILINE)
    suggestions = "## Additional Suggestions\n\n" + response_list[1].strip() if len(response_list) > 1 else ""
    
    new_resume = new_resume.replace("# Optimized Resume", "")
    new_resume = new_resume.replace("## Optimized Resume", "")
    new_resume = new_resume.replace("Optimized Resume", "")
    new_resume = new_resume.replace("# Resume", "")
    new_resume = new_resume.replace("## Resume", "")
    new_resume = re.sub(r'^#+\s*Resume\s*', '', new_resume, flags=re.MULTILINE)
    new_resume = remove_unwanted_headings(new_resume)
    new_resume = fix_jobsdesk_bullets(new_resume)  # Ubah tanda '-' menjadi bullet list
    
    original_resume_path = "resumes/original_resume.md"
    with open(original_resume_path, "w", encoding='utf-8') as f:
        f.write(resume_string)
    
    optimized_resume_path = "resumes/optimized_resume.md"
    with open(optimized_resume_path, "w", encoding='utf-8') as f:
        f.write(new_resume)
    
    return resume_string, new_resume, original_resume_path, optimized_resume_path, suggestions

def export_resume(new_resume):
    try:
        html_content = markdown.markdown(new_resume, extensions=['extra', 'nl2br'])
        output_pdf_file = "resumes/optimized_resume.pdf"
        HTML(string=html_content).write_pdf(
            output_pdf_file,
            stylesheets=["resumes/style.css"]
        )
        return output_pdf_file
    except Exception as e:
        return f"Failed to export resume: {str(e)} πŸ’”"

# Bagian aplikasi Gradio (sama seperti kode Anda)
with gr.Blocks() as app:
    gr.Markdown("# Resume Optimizer πŸ“„")
    gr.Markdown("Upload your resume, paste the job description, and get actionable insights!")
    
    with gr.Row():
        resume_input = gr.File(label="Upload Your Resume")    
        jd_input = gr.Textbox(
            label="Paste the Job Description Here",
            lines=9,
            interactive=True,
            placeholder="Paste job description..."
        )
    
    run_button = gr.Button("Optimize Resume πŸ€–")
    
    with gr.Row():
        before_md = gr.Markdown(label="Original Resume (Before)")
        after_md = gr.Markdown(label="Optimized Resume (After)")
        output_suggestions = gr.Markdown(label="Suggestions")
    
    with gr.Row():
        download_before = gr.File(label="Download Original Resume")
        download_after = gr.File(label="Download Optimized Resume")
        
    export_button = gr.Button("Export Optimized Resume as PDF πŸš€")
    export_result = gr.File(label="Download PDF")
    
    run_button.click(
        process_resume,
        inputs=[resume_input, jd_input],
        outputs=[before_md, after_md, download_before, download_after, output_suggestions]
    )
    
    export_button.click(
        export_resume,
        inputs=[after_md],
        outputs=[export_result]
    )
    
app.launch()