File size: 7,351 Bytes
f8387c1 bfd445f e98268a f8387c1 169b5ce f8387c1 37ffd3f f8387c1 c9135a2 094420a c9135a2 f8387c1 37ffd3f f8387c1 37ffd3f f8387c1 dabfbfe f8387c1 5f61464 169b5ce f8387c1 169b5ce 1535a98 ef396f3 1535a98 ef396f3 1535a98 094420a 1535a98 094420a 46fc669 98e28e8 1535a98 98e28e8 37ffd3f 98e28e8 1535a98 37ffd3f 169b5ce 1535a98 62bcdd1 169b5ce 62bcdd1 169b5ce 62bcdd1 1535a98 62bcdd1 f8387c1 888d73b 37ffd3f 93fba37 169b5ce 1535a98 169b5ce f8387c1 37ffd3f f8387c1 1535a98 f8387c1 dfc3347 1535a98 f8387c1 dfc3347 169b5ce 1535a98 28634dd 1535a98 c9135a2 28634dd 1535a98 c9135a2 28634dd dfc3347 28634dd 67ff76d 1535a98 ef396f3 67ff76d ef396f3 1535a98 169b5ce 1535a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import re
import markdown
import gradio as gr
from weasyprint import HTML
from markitdown import MarkItDown
from cerebras.cloud.sdk import Cerebras
# Dapatkan API key dari environment variables
api_key = os.environ.get("CEREBRAS_API_KEY")
# Inisialisasi MarkItDown
md_converter = MarkItDown()
def create_prompt(resume_string: str, jd_string: str) -> str:
"""
Membuat prompt detail untuk AI agar melakukan optimasi resume
berdasarkan job description.
"""
return f"""
You are a professional resume optimization expert specializing in tailoring resumes to specific job descriptions. Your goal is to optimize my resume and provide actionable suggestions for improvement to align with the target role.
### Guidelines:
1. **Relevance**:
- Prioritize experiences, skills, and achievements **most relevant to the job description**.
- Remove or de-emphasize irrelevant details to ensure a **concise** and **targeted** resume.
- Limit work experience section to 2-3 most relevant roles
- Limit bullet points under each role to 2-3 most relevant impacts
2. **Action-Driven Results**:
- Use **strong action verbs** and **quantifiable results** (e.g., percentages, revenue, efficiency improvements) to highlight impact.
3. **Keyword Optimization**:
- Integrate **keywords** and phrases from the job description naturally to optimize for ATS (Applicant Tracking Systems).
4. **Additional Suggestions** *(If Gaps Exist)*:
- If the resume does not fully align with the job description, suggest:
1. **Additional technical or soft skills** that I could add to make my profile stronger.
2. **Certifications or courses** I could pursue to bridge the gap.
3. **Project ideas or experiences** that would better align with the role.
5. **Formatting**:
- Output the tailored resume in **clean Markdown format**.
- Include an **"Additional Suggestions"** section at the end with actionable improvement recommendations.
---
### Input:
- **My resume**:
{resume_string}
- **The job description**:
{jd_string}
---
### Output:
1. - A resume in **Markdown format** that emphasizes relevant experience, skills, and achievements.
- Incorporates job description **keywords** to optimize for ATS.
- Uses strong language and is no longer than **one page**.
2. **Additional Suggestions** *(if applicable)*:
- List **skills** that could strengthen alignment with the role.
- Recommend **certifications or courses** to pursue.
- Suggest **specific projects or experiences** to develop.
"""
def get_resume_response(prompt: str, api_key: str, model: str = "llama-3.3-70b", temperature: float = 0.7) -> str:
"""
Mengirim prompt ke model Cerebras (LLM) dan mengembalikan hasil streaming response.
"""
client = Cerebras(api_key=api_key)
stream = client.chat.completions.create(
messages=[
{"role": "system", "content": "Expert resume writer"},
{"role": "user", "content": prompt}
],
model=model,
stream=True,
temperature=temperature,
max_completion_tokens=1024,
top_p=1
)
response_string = ""
for chunk in stream:
response_string += chunk.choices[0].delta.content or ""
return response_string
def remove_unwanted_headings(markdown_text: str) -> str:
pattern = r'^#+.*\b(?:[Rr]esume|[Oo]ptimized)\b.*$'
return re.sub(pattern, '', markdown_text, flags=re.MULTILINE)
def fix_jobsdesk_bullets(text: str) -> str:
"""
Mengubah semua baris yang dimulai dengan tanda '-' (opsional dengan spasi)
menjadi format bullet list Markdown standar.
"""
return re.sub(r'^\s*-\s+', '- ', text, flags=re.MULTILINE)
def process_resume(resume, jd_string):
# Cek ekstensi dan konversi dokumen menggunakan MarkItDown
supported_extensions = ('.pptx', '.docx', '.pdf', '.jpg', '.jpeg', '.png', '.xlsx')
if resume.name.lower().endswith(supported_extensions):
result = md_converter.convert(resume.name)
resume_string = result.text_content
else:
return "File format not supported for conversion to Markdown.", "", "", "", ""
prompt = create_prompt(resume_string, jd_string)
response_string = get_resume_response(prompt, api_key)
response_list = response_string.split("## Additional Suggestions")
new_resume = response_list[0].strip()
new_resume = re.sub(r'^\* ', '- ', new_resume, flags=re.MULTILINE)
suggestions = "## Additional Suggestions\n\n" + response_list[1].strip() if len(response_list) > 1 else ""
new_resume = new_resume.replace("# Optimized Resume", "")
new_resume = new_resume.replace("## Optimized Resume", "")
new_resume = new_resume.replace("Optimized Resume", "")
new_resume = new_resume.replace("# Resume", "")
new_resume = new_resume.replace("## Resume", "")
new_resume = re.sub(r'^#+\s*Resume\s*', '', new_resume, flags=re.MULTILINE)
new_resume = remove_unwanted_headings(new_resume)
new_resume = fix_jobsdesk_bullets(new_resume) # Ubah tanda '-' menjadi bullet list
original_resume_path = "resumes/original_resume.md"
with open(original_resume_path, "w", encoding='utf-8') as f:
f.write(resume_string)
optimized_resume_path = "resumes/optimized_resume.md"
with open(optimized_resume_path, "w", encoding='utf-8') as f:
f.write(new_resume)
return resume_string, new_resume, original_resume_path, optimized_resume_path, suggestions
def export_resume(new_resume):
try:
html_content = markdown.markdown(new_resume, extensions=['extra', 'nl2br'])
output_pdf_file = "resumes/optimized_resume.pdf"
HTML(string=html_content).write_pdf(
output_pdf_file,
stylesheets=["resumes/style.css"]
)
return output_pdf_file
except Exception as e:
return f"Failed to export resume: {str(e)} π"
# Bagian aplikasi Gradio (sama seperti kode Anda)
with gr.Blocks() as app:
gr.Markdown("# Resume Optimizer π")
gr.Markdown("Upload your resume, paste the job description, and get actionable insights!")
with gr.Row():
resume_input = gr.File(label="Upload Your Resume")
jd_input = gr.Textbox(
label="Paste the Job Description Here",
lines=9,
interactive=True,
placeholder="Paste job description..."
)
run_button = gr.Button("Optimize Resume π€")
with gr.Row():
before_md = gr.Markdown(label="Original Resume (Before)")
after_md = gr.Markdown(label="Optimized Resume (After)")
output_suggestions = gr.Markdown(label="Suggestions")
with gr.Row():
download_before = gr.File(label="Download Original Resume")
download_after = gr.File(label="Download Optimized Resume")
export_button = gr.Button("Export Optimized Resume as PDF π")
export_result = gr.File(label="Download PDF")
run_button.click(
process_resume,
inputs=[resume_input, jd_input],
outputs=[before_md, after_md, download_before, download_after, output_suggestions]
)
export_button.click(
export_resume,
inputs=[after_md],
outputs=[export_result]
)
app.launch()
|