File size: 7,484 Bytes
f8387c1 95242f6 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 95242f6 c9135a2 f8387c1 c9135a2 95242f6 c9135a2 95242f6 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 95242f6 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 f8387c1 c9135a2 95242f6 c9135a2 f8387c1 c9135a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
from cerebras.cloud.sdk import Cerebras
from markitdown import MarkItDown
from weasyprint import HTML
from docx import Document
from pptx import Presentation
from PyPDF2 import PdfReader
import gradio as gr
from PIL import Image
api_key = os.environ.get("CEREBRAS_API_KEY")
md_converter = MarkItDown()
def extract_file_preview(file_path):
"""
Extracts a preview of the file based on its format.
"""
try:
file_ext = os.path.splitext(file_path)[-1].lower()
if file_ext in [".jpg", ".jpeg", ".png"]:
return Image.open(file_path)
elif file_ext == ".pdf":
reader = PdfReader(file_path)
return "\n".join([page.extract_text() for page in reader.pages[:2]])
elif file_ext in [".docx"]:
doc = Document(file_path)
return "\n".join([para.text for para in doc.paragraphs[:20]])
elif file_ext in [".pptx"]:
ppt = Presentation(file_path)
slides_text = []
for slide in ppt.slides[:5]:
slide_text = []
for shape in slide.shapes:
if hasattr(shape, "text"):
slide_text.append(shape.text)
slides_text.append("\n".join(slide_text))
return "\n---\n".join(slides_text)
else:
return "File preview not supported for this format."
except Exception as e:
return f"Error extracting file preview: {str(e)}"
# Functions for resume optimization
def create_prompt(resume_string: str, jd_string: str) -> str:
"""
Creates a detailed prompt for AI-powered resume optimization based on a job description.
"""
return f"""
You are a professional resume optimization expert specializing in tailoring resumes to specific job descriptions. Your goal is to optimize my resume and provide actionable suggestions for improvement to align with the target role.
### Guidelines:
1. **Relevance**:
- Prioritize experiences, skills, and achievements **most relevant to the job description**.
- Remove or de-emphasize irrelevant details to ensure a **concise** and **targeted** resume.
- Limit work experience section to 2-3 most relevant roles
- Limit bullet points under each role to 2-3 most relevant impacts
2. **Action-Driven Results**:
- Use **strong action verbs** and **quantifiable results** (e.g., percentages, revenue, efficiency improvements) to highlight impact.
3. **Keyword Optimization**:
- Integrate **keywords** and phrases from the job description naturally to optimize for ATS (Applicant Tracking Systems).
4. **Additional Suggestions** *(If Gaps Exist)*:
- If the resume does not fully align with the job description, suggest:
1. **Additional technical or soft skills** that I could add to make my profile stronger.
2. **Certifications or courses** I could pursue to bridge the gap.
3. **Project ideas or experiences** that would better align with the role.
5. **Formatting**:
- Output the tailored resume in **clean Markdown format**.
- Include an **"Additional Suggestions"** section at the end with actionable improvement recommendations.
---
### Input:
- **My resume**:
{resume_string}
- **The job description**:
{jd_string}
---
### Output:
1. **Tailored Resume**:
- A resume in **Markdown format** that emphasizes relevant experience, skills, and achievements.
- Incorporates job description **keywords** to optimize for ATS.
- Uses strong language and is no longer than **one page**.
2. **Additional Suggestions** *(if applicable)*:
- List **skills** that could strengthen alignment with the role.
- Recommend **certifications or courses** to pursue.
- Suggest **specific projects or experiences** to develop.
"""
def get_resume_response(prompt: str, api_key: str, model: str = "llama-3.3-70b", temperature: float = 0.7) -> str:
"""
Sends a resume optimization prompt to Cerebras' API and returns the optimized resume response.
"""
# Initialize the Cerebras client with the API key
client = Cerebras(api_key=api_key)
# Make API call using the Llama 3.3 70B model
stream = client.chat.completions.create(
messages=[
{"role": "system", "content": "Expert resume writer"},
{"role": "user", "content": prompt}
],
model=model,
stream=True,
temperature=temperature,
max_completion_tokens=1024,
top_p=1
)
# Collect the response chunks from the stream
response_string = ""
for chunk in stream:
response_string += chunk.choices[0].delta.content or ""
return response_string
def process_resume(file, jd_string):
try:
file_path = file.name
original_preview = extract_file_preview(file_path)
result = md_converter.convert(file_path)
resume_string = result.text_content
prompt = f"Optimize resume based on job description: {jd_string}"
optimized_resume = "Optimized resume placeholder" # Simulate response for now.
# Save the files for download
original_file_path = file_path
optimized_file_path = "resumes/optimized_resume.md"
with open(optimized_file_path, "w", encoding="utf-8") as f:
f.write(optimized_resume)
return original_preview, resume_string, optimized_resume, original_file_path, optimized_file_path
except Exception as e:
return f"Error processing file: {str(e)}", "", "", "", ""
def export_as_pdf(resume_md):
try:
pdf_path = "resumes/optimized_resume.pdf"
HTML(string=resume_md).write_pdf(pdf_path)
return pdf_path
except Exception as e:
return f"Failed to export PDF: {str(e)}"
def export_as_word(resume_md):
try:
doc_path = "resumes/optimized_resume.docx"
doc = Document()
for line in resume_md.split("\n"):
doc.add_paragraph(line)
doc.save(doc_path)
return doc_path
except Exception as e:
return f"Failed to export Word: {str(e)}"
# Gradio UI
with gr.Blocks() as app:
gr.Markdown("# Resume Optimizer π")
gr.Markdown("Upload your resume, paste the job description, and get actionable insights!")
with gr.Row():
resume_input = gr.File(label="Upload Your Resume")
jd_input = gr.Textbox(label="Paste Job Description", lines=5)
run_button = gr.Button("Optimize Resume")
with gr.Row():
before_preview = gr.Markdown(label="Original File Preview")
before_md = gr.Markdown(label="Original (Markdown)")
after_md = gr.Markdown(label="Optimized (Markdown)")
with gr.Row():
download_before = gr.File(label="Download Original")
#download_after_md = gr.File(label="Download Optimized (Markdown)")
download_after_pdf = gr.File(label="Download Optimized (PDF)")
download_after_word = gr.File(label="Download Optimized (Word)")
run_button.click(
process_resume,
inputs=[resume_input, jd_input],
outputs=[before_preview, before_md, after_md, download_before, download_after_md]
)
gr.Button("Export as PDF").click(
export_as_pdf,
inputs=[after_md],
outputs=[download_after_pdf]
)
gr.Button("Export as Word").click(
export_as_word,
inputs=[after_md],
outputs=[download_after_word]
)
app.launch() |