Spaces:
Running
Running
File size: 1,064 Bytes
b50c8d8 3f7f130 b50c8d8 3f7f130 c1669c3 b50c8d8 3f7f130 c1669c3 3f7f130 c1669c3 3f7f130 c1669c3 3f7f130 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
import torch
def recognize_captcha(input, mdl):
input = input.convert('RGB')
# Load model and processor
processor = TrOCRProcessor.from_pretrained(mdl)
model = VisionEncoderDecoderModel.from_pretrained(mdl)
# Prepare image
pixel_values = processor(input, return_tensors="pt").pixel_values
# Generate text
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
iface = gr.Interface(
fn=recognize_captcha,
inputs=[
gr.Image,
gr.Dropdown(
['anuashok/ocr-captcha-v3','anuashok/ocr-captcha-v2','anuashok/ocr-captcha-v1'], label='Model to use'
)
],
outputs=['text'],
title = "character sequence recognition from scene-image (captcha)",
description = "Using some TrOCR models found on the HF Hub. Will you have to train your own?",
examples = ['','']
)
iface.launch()
|