PetClassifier / app.py
muddokon's picture
Update app.py
9149a8c verified
raw
history blame
1.29 kB
from fastai.vision.all import *
from fastai.learner import load_learner
from huggingface_hub import from_pretrained_fastai, hf_hub_download
import gradio as gr
import skimage
learn = from_pretrained_fastai("kurianbenoy/course_v5_lesson2_pets_convnext_base_in22k")
#learn = load_learner(
# hf_hub_download("kurianbenoy/course_v5_lesson2_pets_convnext_base_in22k", "model.pkl")
#)
labels = learn.dls.vocab
def predict(img):
img = PILImage.create(img)
pred,pred_idx,probs = learn.predict(img)
return {labels[i]: float(probs[i]) for i in range(len(labels))}
title = "Pet Breed Classifier"
description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo from the course by Jeremy Howard."
article="<p style='text-align: center'><a href='https://course.fast.ai/' target='_blank'>Go to course</a></p>"
examples = ['siamese.jpg','pug.jpg']
interpretation='default'
enable_queue=True
gr.Interface(fn=predict,
inputs=gr.inputs.Image(shape=(512, 512)),
outputs=gr.outputs.Label(num_top_classes=3),
title=title,
description=description,
article=article,
examples=examples,
interpretation=interpretation,
enable_queue=enable_queue).launch()