Spaces:
Sleeping
Sleeping
update code
Browse files
app.py
CHANGED
|
@@ -28,17 +28,21 @@ class Disease(BaseModel):
|
|
| 28 |
def greet_json():
|
| 29 |
return {"Hello": "World!"}
|
| 30 |
|
| 31 |
-
@app.post("/"
|
| 32 |
-
async def
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
|
|
|
| 28 |
def greet_json():
|
| 29 |
return {"Hello": "World!"}
|
| 30 |
|
| 31 |
+
@app.post("/")
|
| 32 |
+
async def greet_post():
|
| 33 |
+
return {"Hello": "Post World!"}
|
| 34 |
+
|
| 35 |
+
# @app.post("/", response_model=list[Disease])
|
| 36 |
+
# async def predict(query: str):
|
| 37 |
+
# query_embedding = model.encode(query).astype('float')
|
| 38 |
+
# similarity_vectors = model.similarity(q, all_embeddings)
|
| 39 |
+
# scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
|
| 40 |
+
# id_ = df.iloc[indicies]
|
| 41 |
+
# id_ = df.drop_duplicates("label")
|
| 42 |
+
# scores = scores[id_.index]
|
| 43 |
+
# diseases = label_encoder.inverse_transform(id_.label.values)
|
| 44 |
+
# id_ = id_.label.values
|
| 45 |
+
# diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(id_, diseases, scores)]
|
| 46 |
+
# return diseases
|
| 47 |
|
| 48 |
|