mudaza commited on
Commit
86e9506
·
1 Parent(s): 3f52cc0

update code

Browse files
Files changed (1) hide show
  1. app.py +16 -12
app.py CHANGED
@@ -28,17 +28,21 @@ class Disease(BaseModel):
28
  def greet_json():
29
  return {"Hello": "World!"}
30
 
31
- @app.post("/", response_model=list[Disease])
32
- async def predict(query: str):
33
- query_embedding = model.encode(query).astype('float')
34
- similarity_vectors = model.similarity(q, all_embeddings)
35
- scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
36
- id_ = df.iloc[indicies]
37
- id_ = df.drop_duplicates("label")
38
- scores = scores[id_.index]
39
- diseases = label_encoder.inverse_transform(id_.label.values)
40
- id_ = id_.label.values
41
- diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(id_, diseases, scores)]
42
- return diseases
 
 
 
 
43
 
44
 
 
28
  def greet_json():
29
  return {"Hello": "World!"}
30
 
31
+ @app.post("/")
32
+ async def greet_post():
33
+ return {"Hello": "Post World!"}
34
+
35
+ # @app.post("/", response_model=list[Disease])
36
+ # async def predict(query: str):
37
+ # query_embedding = model.encode(query).astype('float')
38
+ # similarity_vectors = model.similarity(q, all_embeddings)
39
+ # scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
40
+ # id_ = df.iloc[indicies]
41
+ # id_ = df.drop_duplicates("label")
42
+ # scores = scores[id_.index]
43
+ # diseases = label_encoder.inverse_transform(id_.label.values)
44
+ # id_ = id_.label.values
45
+ # diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(id_, diseases, scores)]
46
+ # return diseases
47
 
48