Spaces:
Sleeping
Sleeping
update code
Browse files
app.py
CHANGED
|
@@ -33,12 +33,12 @@ async def predict(query: str):
|
|
| 33 |
query_embedding = model.encode(query).astype('float')
|
| 34 |
similarity_vectors = model.similarity(q, all_embeddings)
|
| 35 |
scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
scores = scores[
|
| 39 |
-
diseases = label_encoder.inverse_transform(
|
| 40 |
-
|
| 41 |
-
diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(
|
| 42 |
return diseases
|
| 43 |
|
| 44 |
|
|
|
|
| 33 |
query_embedding = model.encode(query).astype('float')
|
| 34 |
similarity_vectors = model.similarity(q, all_embeddings)
|
| 35 |
scores, indicies = torch.topk(similarity_vectors, k=len(all_embeddings))
|
| 36 |
+
id_ = df.iloc[indicies]
|
| 37 |
+
id_ = df.drop_duplicates("label")
|
| 38 |
+
scores = scores[id_.index]
|
| 39 |
+
diseases = label_encoder.inverse_transform(id_.label.values)
|
| 40 |
+
id_ = id_.label.values
|
| 41 |
+
diseases = [dict("id": value[0], "name": value[1], "score" : value[2]) for value in zip(_id, diseases, scores)]
|
| 42 |
return diseases
|
| 43 |
|
| 44 |
|